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SUMMARY : Circumstances that give rise to samples of dead animals from natural 
populations are considered and five important particular situations are emphasized. In two 
of these situations it is possible to estimate the absolute mortality rates of animals in the 
natural populations concerned. In the other three situations the populations comprise two 
or more different types of animal and only the relative mortality rates of these can be 
estimated. 

The most obvious examples of the first two situations come from bird banding experiments. 
Models for such experiments are therefore briefly reviewed. A Poisson model for samples of 
dead animals from a population with an unknown initial size is proposed and is shown to 
produce survival rate estimates that can be readily calculated on the assumption that the 
survival rate per unit time becomes constant for older animals. This model is of value since 
the estimation does not require iterative computer calculations whereas other models making 
essentially the same assumptions do require these. 

The third and fourth situations that have been considered concern large populations with 
relatively small numbers of deaths. The relative mortality rates of the different types of 
animals in the populations can be estimated by comparing the proportions of dead animals 
of the different types with the corresponding proportions of live animals. 

The final situation discussed occurs when animals have associated with them values for 
certain characters X1, X2, . . ., Xp and the relative mortality rates of animals with different 
X values is to be determined by comparing the distribution of the X's for live and dead 
animals. 

INTRODUCTION 
Data obtained from records of dead individuals

can be used to estimate absolute and relative survival
rates for 'populations of animals living under natural
conditions. The purpose of this paper is to review
experimental procedures that give rise to counts of
dead animals and to discuss appropriate methods
for analysing data. To begin with some examples
will be considered in order to illustrate the range of
situations that will be covered. 

Probably the best known situation occurs with
bird banding. Each year for a number of years a
group of birds is banded and released. A proportion
of the bands are recovered from dead birds and
providing that the bands are dated it is possible to
build up a record of the recoveries made from birds
in successive years after they were banded. Table 1
shows the results obtained in this way by Fordham
and Cormack (1970) for Dominican gulls on Somes
Island, New Zealand. On occasions the number of
birds banded in each year is not certain because
some birds are banded without this being recorded.
This is the case with the British Heron for which
North and Morgan (1979) report the data shown
in Table 2. 

A rather different type of experiment was
 

New Zealand Journal of Ecology 4: 78-88 

described by Sheppard (1951). He was studying
various aspects of predation of the snail Capea
nemoralis by the song thrush and, in particular,
whether the birds are selective in their choice of
different colours of the snail. To test this he collected
1358 C. nemoralis snails from several locations,
marked them, and scattered them near some thrush
"anvils" in Ten Acre Copse, Wytham Woods, on
26 April 1950. It is known that thrushes break
snail shells on the stone "anvils" so that they can
eat the soft parts. Sheppard therefore collected the
remains of broken marked shells at various times
after 26 April and compared their colour distribution

TABLE 1. Band returns from dead Dominican gulls on
Somes Island. New Zealand. according to Fordham and
Cormack (1970).

Year Number Year after banding in which recovery
of banded was made 
banding 1 2 3 4 5 6 
1961 574 16 10 10 6 7 5 
1962 728 20 12 4 5 5  
1963 710 23 9 5 2   
1964 561 21 9 8    
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with the known distribution in the marked popula-
tion. The results of his collections are shown in
Table 3. 

While carrying out his experiments in Ten Acre
Copse, Sheppard also collected broken shells from
some thrush "anvils" in Marley Wood. In this case
there was not a known population of marked shells.
However samples from the population being
predated were taken on two occasions during the
collection period and these give an estimate of the
population proportions of different colours of snail.
The results of the Marley Wood experiment are
shown in Table 4. 

Another example of data based upon counting
dead individuals comes from Wong and Ward's
(1972) experiment on predation of Daphnia
publicaria by yellow perch fry. Wong and Ward
compared the size distribution of D. publicaria in
the stomachs of perch fry with the distribution in
the plankton in West Blue Lake, Manitoba, on five
occasions over the period 1 July to 25 August 1969.
Any differences between the stomach and plankton
distributions is presumably due to size selective
predation. The experimental results are shown in
Table 5 for one of the five sampling times. 

All of these example have one important common
feature: the dead animals recorded are only a
sample of all the animals that die. It is this feature
that makes the analysis of the various sets of data
 

somewhat complicated. The estimation of survival
rates and other population parameters is usually
relatively straightforward if the actual numbers of
living and dead animals are known at several points

TABLE 3. Samples of broken Cepaea nemoralis shells
from thrush "anvils" at Ten Acre Copse. It. is known
that the broken shells came from a population consisting
of 747 yellow snails and 611 pink and brown snails on
26 April 1950. Data from Sheppard (1951). 

Year     Year after banding in which recovery was made        

of                      

Banding 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 

1955 31 5 0 0 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

1956 14 5 5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1957 27 10 1 3 3 I 0 0 0 0 0 0 0 0 1 1 0 0 0   
1958 13 2 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0    
1959 35 22 7 6 1 2 1 2 0 0 0 0 0 0 0 0 0     
1960 5 6 5 0 2 0 0 0 0 I 0 0 0 0 0 0      
1961 22 5 2 1 1 0 0 0 0 0 0 0 0 0 0       
1962 7 0 0 0 0 0 0 0 0 0 0 0 0 0        
1963 3 2 1 2 0 0 0 0 0 0 1 0 0         
1964 7 3 2 0 0 0 0 0 1 0 0 0 0         
1965 12 5 1 0 0 1 0 0 0 3 1           
1966 7 9 4 0 1 0 1 0 0 0            
1967 31 9 5 4 1 2 2 0 0             
1968 35 11 2 0 4 0 2 2              
1969 58 16 6 0 0 1 1               
1970 40 17 8 6 3 2                
1971 30 17 4 6 3                 
1972 24 14 4 1                  
1973 32 5 3                   
1974 21 5                    

  Broken Shells Collected 

Date Day Number Pink and 
Brown Yellow 

28 April 2 0 2 

1 May 5 0 1 
2 " 6 1 1 
5 " 9 1 3 
8 " 12 3 9 

11 " 15 0 1 
12 " 16 7 4 
16 " 20 0 1 
17 " 21 0 1 
20 " 24 1 0 
22 " 26 1 1 
30 " 34 0 2 
3 June 38 2 1 

5 " 40 3 0 

   19 27 

TABLE 2. Band returns from British Herons given by North and Morgan (/979) with the original source being the

British Trust for Ornithology. All the Herons were banded as nestlings. 
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TABLE 4. Samples of broken Capaea nemoralis shells
from thrush "anvils" in Marley Wood. The anvils were
cleared of broken shells on 6 April 1950. Random
samples taken from the population being predated
contained 397 pink and brown shells and 137 yellow
shells. 

TABLE 5. Distribution of the lengths of Daphnia
publicaria in plankton samples and in the stomachs of
perch fry at West Blue Lake on 1 July 1969. This table
was constructed from Figure 1 of Wong and Ward
(1972) and might therefore contain some small errors.

in time. Only experiments involving samples of dead
animals are considered in this paper. 

There is perhaps a need to specifically mention
one situation that is not going to be considered.
This occurs when bird band data are obtained from
birds that are shot by hunters. The data then have
exactly the same form as the examples shown in
Tables 1 and 2. However, shooting clearly does not
give a random sample of birds that die from all
 

causes. Therefore a statistical model for shooting
returns will have different parameters from a model
for returns from dead birds in general. Actually,
it turns out that both these situations can be
considered as special cases of the multi-sample
single recapture census (Sebef, 1980). However this
is an aspect of modelling that will not be discussed
in the present paper, 

The examples suggest that there are essentially
five different types of model for counts of dead
animals that need to be covered, as follows: 
(a) There is a population with a known size at time to

which decreases through deaths at an appreciable
fate from then on. The data available for analysis
are counts d1, d2, . . . , ds of dead animals, where
di is an unknown proportion of the animals that
died between time ti-1 and time ti. The band
returns from one year of banding of Dominican
gulls (Table 1) is an example of this type of
situation. The problem is to estimate survival rates
and also the probability of recovering a dead
animal. 

(b) This is like (a), except that the initial popula-
tion size is unknown. The band returns from
one year of banding of British Herons (Table
2) is an example of this type of situation. The
problem is to estimate survival rates. 

(c) The population from which the deaths come
is very large in comparison with the number of
deaths during the experimental period. This
means that the counts of dead animals do not
change appreciably due to a reduction in the
population size. The object of analysing the
data is not to estimate the absolute survival
rate, which is very high. Rather, the population
consists of K(>2) different types of animal and
it is desired to estimate their relative mortality
rates. To do this the proportions of different
types of dead animals can be compared with
the proportions in the population, which are
known exactly. Sheppard's (1951) Ten Acre
Copse experiment yielded this type of data
(Table 3). 

(d) This is the same as (c) except that the
proportions of different types of animal in the
population are only known from random
sampling of live individuals. Interest still centres
on the estimation of relative survival rates.
Sheppard's (1951) Marley Wood experiment
yielded this type of data (Table 4). 

(e) The population from which the deaths come
is very large compared to the number of deaths.
Each individual in the population is character-
ised by the values that it possesses for the

 Number in length class 

Length (mm) Plankton Stomach 

0.5-0.7 20 59 
0.7 22 84 
0.9 20 154 
1.1 18 138 
1.3 26 44 
1.5 24 10 
1.7 22 5 
1.9 24 0 
2.1 26 0 
2.3 16 0 
2.5 11 0 
2.7 7 0 

2.9-3.1 1 0 

Total 237 494 
Mean length (mm) 1.56 1.03 
Standard deviation 0.59 0.25 
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variables Xl, X2, . . ., Xp. The multivariate
distribution of the X's in the population is
estimated from a random sample and this can
be compared with the distribution in a random
sample of dead individuals. The problem is to
see how the survival varies for individuals with
different values for the X's. Wong and Ward's
(l972) data on predation of Daphnia publicaria
(Table 5) give an example of this type of
situation with one X variable only (length). 

In all these situations permanent emigration is
taken into account as being equivalent to "death".
However, none of the models that are discussed in
this paper are appropriate when there is an
appreciable amount of temporary emigration. 

Situations (a) to (e) will now be considered in turn. 

A REDUCING POPULATION WITH A KNOWN INITIAL 
SIZE 

Suppose that at time to there are A animals in a
population, and that the probability of surviving the
period from time ti-l to time ti is φi for all animals still
alive at time ti-1. Then the probability of an animal
surviving until time tj-1. dying in the interval tj-l to tj
and its death being recorded, is 

αj = φ1φ2 . . . φj (1 - φj)γj (1) 
where γj is the probability of the death being recorded.
It then follows that the probability of recording d1 dead
animals for the time period from t0 to tl, d2 dead
animals for the time period from tl to t2, . . . , ds dead
animals for the time period from tS-1 to ts is given by 
the multinomial distribution as 
 

is the probability of a particular animal's death
being recorded. 

This multinomial distribution is the basis for
many of the models that have been proposed for
bird banding data with A denoting the number of
birds banded in a particular year. There is then a
 

separate probability of the form of equation (2) for
each year of banding and the probability of the full
set of data (the likelihood function) is obtained by
multiplying the yearly probabilities together.
Maximum likelihood estimates of the various
parameters of the model are then equal to the values
that make this likelihood function as large as
possible. (In general maximum likelihood estimates
of parameters have good properties relative to
ad-hoc estimates calculated in other ways. That is
why it is desirable to find maximum likelihood
estimates of the parameters of models.) 

Explicit formulae for the maximum likelihood
estimation of survival and recording probabilities
are only available for a few specific situations with
bird band data. Seber (1970) gives such formulae
for the case when φj and γj are time-specific so
that the probability of survival and the probability
of recording a death are the same for all birds in
any particular calendar period, irrespective of when
they were banded. Seber (1971) has also found
explicit estimates of survival probabilities on the
assumption that these are age-specific and that the
recovery probability remains constant over time.
These survival estimates are maximum likelihood
estimates conditional on the total number of bands
recovered, R. Unfortunately they do not have good
properties for observations taken over a long period
of time and Seber suggests that in practice it may
be better to follow Fordham and Cormack (1970)
and assume that the survival probability becomes
constant for birds over a certain age. Explicit
estimates are then no longer available from data
involving more than one year of banding. 

The conditional maximum likelihood method used
by Seber (1971) to obtain age-specific survival
probabilities was first used by Haldane (1953, 1955)
for the case where survival and recovery probabilities
are constant over time. 

Brownie et al. (1978) have produced a compre-
hensive handbook on the analysis of bird banding
data, including details of computer programs that
they have written for carrying out calculations.
Allowance is made for animals of different ages to
have different survival rates and also for survival
and recovery rates to vary from year to year.
Brownie et al. were mainly concerned with the
analysis of band recoveries from birds shot by
hunters. However, their computer programs can be
used to analyse data coming from natural deaths. 

A REDUCING POPULATION WITH UNKNOWN INITIAL 
SIZE 

 Consider now the same situation as in the previous
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section, except that the initial population size is not
known. 

The simplest approach to adopt in this case involves
assuming that the recording probabilities γ1, γ2, . . . , γs

of equation (1) are all equal, and noting that the
probability of recording the numbers d1, d2, . . . , ds of
dead animals, conditional on the total number of them
being R, is the multinomial form 

  

P(d1, d2, . . . , ds/R) = Rsd
s

dd
s

R −ξβββ ...
2

2

2

1
!

 
(3)

 
 
II   dj! 
j = l 

where 
βj = φ1 φ2 . . . φj-1 (1 - φj), 

and 
 s 

ξ =  Σ  βj 
j=1 

This probability does not involve the unknown total
number of animals in the population at time to, or the
recording probability. 

Haldane's (1953, 1955) models for bird band experi-
ments were of this form for each year of banding. He
multiplied the probabilities for the different years
together to get the full likelihood function for all the
data and maximised this with all the survival prob-
abilities set equal to φ. This produces an equation for
the conditional maximum likelihood estimate, ϕ̂ , of a
constant survival probability. Seber (1971) used the
same approach for estimating age-specific survival rates.
North and Morgan (1979) did the same when analysing
their Heron data (Table 2) but they assumed that first
year survival rates varied from year to year whilst the
survival rate was constant from year to year for older
birds. An interesting aspect of North and Morgan's
work is the way that they have been able to relate first
year survival to the severity of the winter. 

One problem with bird banding models that
assume constant survival for older birds is the lack
of explicit formulae for maximum likelihood
survival estimates. The result is that usually the
estimation equations need to be solved numerically,
possibly using an electronic computer. It therefore
seems. worth noting the fact that estimates based
upon the assumption of a constant survival rate
after an initial period of varying survival can easily
be calculated for a single cohort of animals that
reduces over time. In the case of bird-banding
experiments the cohort would be the birds banded
in one particular year. 

To see this, suppose that the number of animals in a
population at time t0 = 0 is unknown but large relative
to the total number of dead animals recovered at
different times (say ten times as large, or more). Also
suppose that samples of dead animals all relate to a
 

unit period of time (such as a year) so that dj is the
number of animals recorded as dying between time tj-1

= j-l and time tj = j. Then d1, d2, . . . , ds will approx-
imately be independent Poisson variates with the mean
value of dj given by 

Ej = φ1φ2 . . . φj-1 (1 - φj) γjA, 

or 
Ej = φ1φ2 . . . φj-1 (1-φj) Bj, 

where Bj = γjA. The likelihood for the observed values
will then be 

s
P(dl, d2,..., ds) = II     exp(-Ej)Ej djdj! 

  j=1 
This type of Poisson model has also been used by
Robson (1963) and Jolly (1979). 

The particular situation that is of interest occurs when
φr+1 = φr+2 = . . . = φs for some value r, with Bj = B
for all j. With r = 2 this corresponds to North and
Morgan's (1979) assumptions. 

If the usual procedure for obtaining maximum likeli-
hood estimates of φ0,φ2,, . . . , φr,φ and B is followed
then the estimates ϕ̂ 1, ϕ̂ 2, . . . , ϕ̂ r,φ and Β  are found to 
 satisfy the equations 

Tr/Rr - 1/(1- ϕ̂ ) + (s-r) ϕ̂ s-r/(l- ϕ̂ s-r) = 0, 
 

Β̂ = R0 + Rr ϕ̂
s-r/(l- ϕ̂ s-r), 

and 
ϕ̂ i = ( Β̂ - R0 + Ri) / ( Β̂  - R0 + Ri-1), 

i = 1, 2, . . . , r. Here 
  s  s 

RI = Σ dj and Ti = Σ (j-i-1)dj 
j=i+1          j=i+1 

(See the Appendix 1 for more details of how these
equations are obtained and also the derivation of
equations (12) to (18) below). 

If s-r is large so that φs-r ≈  0 then equation (5)
reduces to 

(4)

(5)

(6)

(7) 

(8)

φ = 1-Rr/Tr 
and it also follows that 

B= R0, 
and 

ϕ̂ i = Ri/Ri-1 (II) 
If φs-r is not near zero then the solution for equation
(5) can be read easily from Figure 1 and estimates of B
and φi follow directly from equations (6) and (7). With
r=0 equation (9) gives Lack's estimate of survival
(Seber, 1973, page 247). Equation (5) can also be solved
using a table given by Robson and Chapman (1961) and
reproduced by Seber (1973, Appendix A6). 

The variances and covariances of the estimators are
approximately given by the following equations; 

 
Var( Β̂ ) ≈  B/(1-φ1φ2 . . .φs-r)          (12) 

(9)

(10)
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FIGURE 1. The solution of the equation 
T/R -l/(1- ϕ̂ ) + n ϕ̂ N/(1- ϕ̂ N) = 0 
can be read from this figure, for given values of R/T and
N. For example if R/T = 0.5 and N = 4 then ϕ̂ ≈ 0.67.
The solution of equation (5) of this paper can be found by
putting T/R = Tr/Rr and N = s-r. 

The terms multiplied by the factor φs-r represent
corrections to take into account the fact that sampling
has not continued until all animals are dead (i.e., until
φs-r ≈ 0). These terms should be small compared to the
other terms. If they are not then these variance and
 

covariance formulae may be rather inaccurate (see
Appendix 1). Note that if φs-r ≈ 0). then covariances are
all approximately zero. 

Example 
As an example of the above equations, consider

the data on British Herons (Table 2). Table 6 shows
the estimate obtained from these data, together with
estimated standard errors, on the assumption that
the survival rate became constant after two years
of life. This is the assumption made by North and
Morgan (1979). Actually, likelihood ratio goodness
of fit tests (Brownie et al.. 1978, p. 203) indicate
that for birds banded in most years it is sufficient
to assume a constant survival rate for birds over
one year of age. 

Equation (14) indicates that Var( ϕ̂ i) is proportional
to 1/(φ1φ2. . . φi-1B), which is approximately propor-
tional to 1/Ri-l. It is therefore appropriate to estimate
the mean value of φi using a weighted mean of the
estimate ϕ̂ i, weighted by Ri-1 (Seber, 1973, p.6). In 

TABLE 6. Survival probabilities estimated from the British
Heron data shown in Table 2. 

Year of
Banding 
 

1955 
]956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974

ϕ̂ 1 
 

0.26
0.52
0.43
0.35
0.54
0.74
0.29
0.00
0.67
0.46
0.56
0.68
0.43
0.40
0.30
0.50
0.67
0.45
0.29
0.37

Std
err. 

 
0.00
0.09
0.07
0.11
0.06
0.10
0.08

- 
0.16
0.14
0.14
0.10
0.07
0.07
0.05
0.06
0.05
0.08
0.08
0.09

 
ϕ̂ 2 

 
0.55 
0.67 
0.50 
0.71 
0.46 
0.57 
0.44 

- 
0.67 
0.50 

- 
0.40 
0.62 

- 
0.34 
0.57 
0.72 
0.28 
0.61 

- 

Std. 
err. 

 
0.15 
0.12 
0.11 
0.17 
0.08 
0.13 
0.17 

- 
0.19 
0.21 

- 
0.13 
0.10 

- 
0.10 
0.08 
0.06 
0.10 
0.11 

- 

ϕ̂  
 

0.79
0.52
0.79
0.58
0.60
0.58
0.43

- 
0.71
0.67
0.88
0.51
0.63
0.70
0.52
0.63
0.89
0.25

- 
-

Std.
err. 

 

0.08
0.11
0.06
0.14
0.07
0.11
0.19

- 
0.08
0.19
0.04
0.15
0.09
0.07
0.14
0.08
0.02
0.20

- 
-

Notes: Equation (5) gives ϕ̂ 2 >1 for birds banded in
]965 and 1968. Only ϕ̂ 1 and ϕ̂  have been separately
estimated in these years. Lack of data precludes the
estimation of some of the parameters for birds banded
in 1962, 1973 and 1974. Standard errors (Std. err.) were
calculated using equations (13) and (14) with unknown
parameter values replaced by their estimates. 
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particular the weighted mean of the ϕ̂ 2 estimate in
Table 6 is 

ϕ̂ 2 = ΣR1 ϕ̂ 2/ΣR1 
  ≈ 0.527 , 

with standard error 
SE( ϕ̂ 2) = {ΣR1

2 Var( ϕ̂ 2)/(ΣR1)
2}1/2 

 ≈ 0.028. 
This agrees closely with North and Morgan's full
maximum likelihood estimate of the mean φ2 value
which is 0.532 with standard error 0.029. 

Likewise equation (13) indicates that Var( ϕ̂ ) is pro-
portional to 1/(φ1φ2. . . φrB) , which is approximately
proportional to 1/Rr. An appropriate estimate of the
mean <p value for the Herons is therefore 

ϕ̂  = ΣR2 ϕ̂ /ΣR2 , 
= 0.654, 

with standard error 
SE( ϕ̂ ) = {ΣR2

2 Var( ϕ̂ )/(ΣR2)
2}1/2 

  ≈ 0.028, 
which agrees moderately well with North and Morgan's 
estimate of 0.697 with standard error 0.027. 

A SMALL NUMBER OF DEATHS WITH SEVERAL TYPES  
OF ANIMAL IN KNOWN PROPORTIONS 

The situation that will be considered in this section
occurs when the population from which dead
animals come is very large in comparison with the
number of deaths that occur. Therefore the counts
of dead animals do not decline appreciably over
time because of a reduction in the population size.
This means that the methods of analysis that have
been reviewed above cannot be applied to the data.
Indeed, the main point in analysing data must be
to estimate the relative mortality rates of the
different types of animal in the population since
it is not possible to estimate the absolute rates. 

It will be assumed that the dead animals come from
a large population comprising K distinct types with
relative frequencies A1, A2, ..., Ak. It will also be
assumed that the data available consists of the counts
of dead animals of the various types for s time periods,
with dij being the number of type i dead animals
observed for the time period tj-l to tj (i = 1,2, . . . ,K;
j = 1, 2, . . . , s). 
 If the probability of survival from time tj-l to time tj

for a type i animal alive at time tj-l is 
 φij = exp{-λij(tj - tj-l)}, (19) 
where λij is small, then the probability of death will be 

1 - φij ≈ 1 - {1 - λij(tj - tj-1)} = λij(tj - tj-1). (20)
Therefore the expected number of type i dead animals
recovered in this time interval is 

Eij  ≈  Ai  γij λij ( tj - tj-1 ) B,            (21) 

where AiB is the total number of type i animals alive at
time tj and γj is the recovery rate for all dead animals
for the time interval. For a large population it will be
reasonable to assume that the actual number of type i
animals recovered is a Poisson variate with mean Eij.
Providing that the number of deaths is small it will be
reasonable to treat AiB as remaining constant over time. 

Putting γj = exp(αj) and λij = exp(IIij), equation
(21) can be written as 

Eij = exp[αj + IIij + loge{Ai(tj - tj-1)} + logeB}.           (22) 
This is then a log-linear model of the type that can
be estimated by the computer program GLIM
(Neider, 1975; Manly, 1977a), and other similar
programs. If one of these programs is used then
various different assumptions can be made about
the parameters in the model and the goodness of
fit of these assumptions can be assessed using
chi-squared tests. 

A simpler approach than fitting a log-linear
model involves noting from equation (21) that 

 K      K 
(Eij / Ai) /  Σ  (Erj / Ar) ≈ λij /  Σ  λrj = βij    

    r= 1 r= 1 
where βij is the relative death rate for type i animals for
the time interval tj-1 to tj. If there are an equal number
of animals of each type then a proportion βij of all
deaths are expected to be of type i. Equation (23)
suggests that we estimate βij by 

 K 
βij = (dij / Ai ) / Σ  (drj / Ar ). 

r=l 
On the assumption that the dij's are independent
Poisson variates the biases, variances and covariances
of the βij's are then found by Taylor series approxima-
tion (Seber, 1973, p.7) to be as follows: 

(23) 

(24) 

 
Example 

As an example consider Sheppard's (1951) data
on predation of Capaea nemoralis by thrushes
(Table 3). In this case K=2, corresponding to two
colour classes of snails, with s= 14 samples of dead
snails. 
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Equation (22) was fitted to the data using the program
GLIM. (The OFFSET directive can be used to handle
the known values for loge {Aj (tj - tj-1}.) Various models
were tried, as follows: 

(a) It was assumed that the αj values (the recovery
rate parameters) and the IIij values (the mortality
rate parameters) were constant throughout the
experiment. This gives a very poor fit to the data 

).001.0,78.84( 2
27 <= pχ  

It was assumed that the αj values were not equal
but the IIij values were. This gives a fair fit to the

data ).01.0,83.20( 2
14 <= pχ  

It was assumed that the αj values were not equal
and the IIij values varied with the two colour
classes of snail but were constant over time for
snails in the same class. This gives about the same

fit as model (b) ( ).05.01.0,58.20( 2
13 >>= pχ  

Finally it was assumed that the αj values were
not equal and the IIij values changed linearly with
time relative to the II2j values, so that there is a
relationship of the form 

II1j = A + Btj-1 + II2j 
where A and B are constants and tj-1 is time in
days. This model gives an excellent fit to the data

)1.0,31.14( 2
12 >= pχ and is a considerably

better fit than the other models that were tried. 
Model (d) seems appropriate for the data. It gives

the expected number of pink and brown shells in the
jth sample to be of the form 

Elj = exp[αj - 9.23 + 0.079tj-1 + log {A1(tj-tj-l)}]
while the expected number of yellow shells is 

E2j = exp[αj -7.78 + log {A2(tj-tj-1)}].
Equation (23) then gives relative death rates of 

β1j = exp(-1.36 + 0.079tj-l)/ 
 {1 + exp(-1.36 + 0.079tj-1)}, 

and β2j = 1 - β1j, for the two colour classes. This
suggests that at the start of Sheppard's experiment
(tj-1 =0) the β1j value was 0.20 while at the end of the
experiment (tj-1 = 40) it was 0.86. In other words at
the start of the experiment the death rate was four times
higher for yellow snails than for pink and brown snails,
while by the end of the experiment pink and brown
snails had a death rate about six times higher than
yellow snails. 

An alternative to this computer analysis with the
program GLIM would have been to estimate the
βij values directly using equation (24), and then use
multiple regression to relate changes in these values
to time. However this would give a rather unsatisfac-
tory analysis with this particular example because
the small numbers of dead animals would make the
 

(b) 

(c) 

(d) 

individual βij estimates very unreliable. (A referee
has pointed out the small number of dead animals
means that the chi-square goodness of fit values
given by the GLIM analysis need to be regarded
with some caution too. They are, strictly speaking,
only valid for large expected frequencies.) 

Sheppard's (1951) own treatment of his data
involved a probit analysis of the proportion of pink
and brown shells in the samples at different times.
This is somewhat unsatisfactory because it does not
make use of the known colour composition of the
population of marked snails. 

A SMALL NUMBER OF DEATHS WITH SEVERAL TYPES OF ANIMAL 

IN ESTIMATED PROPORTIONS 

The models discussed in the previous section are
easily modified for the case where the population
relative frequencies A1, A2, . . ., AK are estimated
from a random sample of the live animals rather
than being known exactly. 

Equation (22) still holds and it can be written as
Eij = exp{αj + IIij + δi + loge(tj - tj-1) + loge (B)} 

(28) 
where exp(δi) = Ai. Because Ai is not known, δi must
be estimated along with the other parameters. If a
random sample of live animals is also available then we
can let ai denote the number of type i animals in this,
where ai will have an expected value of the form 
 *

iE  = Ai exp(θ) = exp(δi + θ), (29) 
where exp(θ) is a constant that reflects the sample size. 

Between them equations (28) and (29) provide a
log-linear model that can be fitted to data using
GLIM or a similar computer program. 

Equation (24) can be modified to 
  K 

Β̂ ij =  (eij / ai)/   Σ   (erj / ar)  
 r=1 

to allow for estimated population relative frequencies
a1, a2 . . ., aK for the different types of animal.
Equations (25) to (27) then become 

(30) 
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Example 
Equations (28) and (29) were fitted to Sheppard's 
(1951) Marley Wood data (Table 4) using GLIM. The 
OFFSET directive in the program was used to account 
for the known values of loge(tj-tj-1). Without going 
into details it will merely be said that a model similar to 
the one that fitted with the Ten Acre Copse data was 
found to be appropriate. This model gives 

βij = exp(-0.94 + 0.0387tj-1) / 
{1 + exp(-0.94 + 0.0387tj-1)} 

for the relative death rate of pink and brown snails and 
β2j = 1- β1j for the relative death rate of yellow snails, 
where tj-1 is the time in days from 6 April. At the start 
of the experiment (tj-1 = 0) this gives β1j = 0.28 so 
that a pink and brown snail was rather less likely to be 
eaten than a yellow snail. At the end of the experiment 
(tj-1 = 50) β1j = 0.73, so that the reverse was true. 
Thus, the Marley Woods results confirm the trend 
found at Ten Acre Copse of an initial advantage for 
pink and brown snails that changed to a disadvantage 
as time went on. Sheppard attributed this to changes in 
the colour of the background vegetation. 

MORTALITY RELATED TO QUANTITATIVE VARIABLES 

The final situation that will be considered occurs
when each animal has associated with it values for
certain characters X1, X2, . . ., Xp. A random sample
from the living population is available and also a
random sample of dead animals. The problem is to
see how survival relates to the X variables. The
living population is assumed to be very large. 

For simplicity assume that there is only a single X
variable, which has probability density function f0(x)
in the live population at time zero. Assume also
that the probability of an individual with X = x
surviving for a time t is 

pt(x) = exp{-λ(x)t}, (34) 
Then the probability density function for the
survivors at time t is 

ft(x) = A f0(x) pt(x) 
and the probability density function for the non-

survivors is 
gt(x) = B f0(x){l-pt(x)}, 

where A and B are simply constants which ensure that 
(x) and gt(x) integrate to 1. 

(35)

Now, if t is small then 
pt(x) ≈ 1 - λ(x)t 

so that λ(x) is the death rate for individuals with
X = x. Also in this case 

gt(x) ≈ Bt f0(x) λ(x) (36) 
so that gt (x) and ft(x) have a similar form: they are both
equal to f0(x) multiplied by a function of x. This shows
that if a method is available for estimating pt(x) by
comparing a sample of survivors with a sample from
the original population then this method can be applied
using a sample of deaths in place of the sample of
survivors and it will then give an estimate of λ(x)
instead of pt(x). 

There are indeed methods available for estimating
p(x) (the "fitness function") by comparing a sample
of survivors with a sample from the initial popula-
tion (O'Donald, 1970; Cavalli-Sforza and Bodmer,
1972; Manly I 977b, 1981). One approach involves
assuming that

r
pt(x) = exp{(α0 +   Σ   αix

i)t} 
  i=1 

for some value of r (Manly, 1981). If this is used
with a sample of dead animals instead of a sample
of survivors then it estimates 

 r 
λ(x) = exp (α0 =  Σ    αix

i) 
i=1 

instead of pt(x). In practice α0 cannot be estimated
from sample data. However, this is not important for
the comparison of λ(x) with different values of x. 

The method of estimation discussed by Manly
(1981) for data from a non-normal distribution was
applied to Wong and Ward's (1972) data for I July
(Table 5), for which it estimated 

 
 

 
Here x is the length of Daphnia publicaria, which
has a mean of 1.56 mm and a standard deviation
of 0.59 mm in the plankton sample. This function
gives ,,(1.56) = 1, corresponding to D. pub!icaria of
average length. Relative to this D. publicaria with
a length of only 0.5 mm have a mortality rate of
2.23, while those with the maximum length of
3.1 mm have a mortality rate of only about 6 x 10-14. 

If there are p X variables rather than just one,
then equations (34) to (36) generalise to 

pt(x1, x2, . . . , xp) = exp{- λ(x1, x2, . . . , xp)t}, (37)
ft (x1,  x2, . . . ,   xp) = A f0(xl, x2, . . . , xp) 

×  pt(x1, x2, . . . , xp) 

and 
gt(x1, x2, . . . , xp) = Bt f0(xl, x2, . . . , xp) 

 ×  λ (x1, x2, . . . , xp), 

(38)

(39)
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respectively. The similarity between equations (38) and
39) shows that the multivariate methods for estimating
pt(xl, x2, . . . , xp) discussed by Manly (1981) can also
be used to estimate λ(x1, x2, . . . , , xp). As is the case of
a single X variable, using a sample of dead animals in
place of a sample of survivors results in an estimate of
λ(x1, x2, . . . , xp) rather than pt(x1, x2, . . . ,xp). 
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APPENDIX 1 
THE POISSON MODEL FOR EQUATIONS (4) TO (7) AND 

(12) TO (18) 

The likelihood given by equation (4) is maximised
with respect to parameters B, CPI, φ1φ2, . . . , φr and φ
when the log-likelihood

s 
 λ (B, φ1, φ2, . . . , φr, φ)  =    Σ 
 j=1 
 {dj log Ej - Ej -log(dj!)} 
is maximised. This occurs when 
 
                                                                                        (A1)
 
Equations (A1) produce the estimation equations (5) to
(7) for the maximum likelihood estimators. 

Let θp and θq denote two of the parameters B, φ1,φ2,
. . . , φr,φ. Then the second derivative of the likelihood
function with respect to these is of the form 

 

The standard theory of maximum likelihood estimation
(Seber, 1973, p.5) shows that the matrix of variances
and covariances of parameter estimates 
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is approximately given by minus the inverse of the
matrix whose general term is (A2). This gives 

The matrix V can be calculated by inverting D–H

numerically. However providing most animals are dead

by the end of the experiment wr φs-r ≈ 0 and V is given

by 

 V ≈ D-1 + D-1 H D-1 (A4) 

(Fraser, Duncan and Collar, 1963, p. 120). This

approximation produces equations (12) to (18) of this

paper. If the elements of D-1 H D-1 are not small

relative to the elements of D-1 then V should be

evaluated as (D – H)-1 rather then by using the approx-

imation (A4). 


