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PASTURES, PESTS AND PRODUCTIVITY:
SIMPLE GRAZING MODELS WITH TWO HERBIVORES 

Summary: Simple grazing models with two herbivores are used to assess the effects of pasture pests on stability 
and productivity of continously-growing pastures. Algebraic and graphical methods are also presented for 
estimating losses from pasture pests at different stocking rates directly, from data on productivity/stocking rate 
relationships. 
Pests are considered as competing grazing herbivores and denuders of pasture area. Denuding pests have no 
effect on stability but grazing pests increase the likelihood of discontinuous stability. The forms of the damage 
function and its dependence on stocking rate are described for both types of pest. 

Estimating losses from pasture pests by an equivalent reduction in stocking rate can give useful 'best bet' 
results even when the true effect is to reduce per capita productivity at fixed stocking rates. However, the first 
will overestimate or underestimate the second in particular situations, depending on the level of the fixed 
stocking rate relative to the economic optimum. 

Actual economic losses for rabbits and porina caterpillars, representing grazing and denuding pests, are 
estimated as $2.1/rabbit and $0.08/porina m-2/stock unit carried, based on a reduction in stocking rate. At a 
fixed optimum stocking rate losses are 300/0 greater, and at a fixed 75% optimum stocking rate losses are 60% 
less. 

Given the sensitivity of losses to stocking rate, field trials to estimate pest or weed effects should assess 
their impact on stocking rate rather than their effect on productivity at a fIXed stocking rate whose relationship 
to the theoretical optimum is unknown. 

The equilibrium model is shown to apply to seasonal pastures, but regular variations in growth rate reduce 
productivity and increase stability, converting some discontinuously stable systems into continuously stable ones. 
The likelihood of discontinuous stability appears in any case remote. 

The 'laissez-faire' herbivore/vegetation model (the 'extensive' equivalent of the one described in this paper, 
with herbivore numbers varying) can not be applied to more than one herbivore. 

Keywords: Pasture pests; pest management; pest model; grazing model; sheep grazing; Wiseana; Hepialidae; 

stocking rate; pasture production 

Introduction 
Noy-Meir (1975, 1976, 1978a, 1978b) demonstrated 
how simple, 2-equation predator/prey models could 
provide useful insights into the dynamic behaviour of 
managed grazing systems, their stability and the 
relationship between total stock intake or productivity 
and stocking rate at equilibrium. That is, parameters 
are assumed to remain constant so that a balance is 
eventually achieved between growth and consumption 
and the vegetation reaches a steady state. This paper 
briefly reviews the essential features of Noy-Meir's 
models, then considers their validity in the more 
realistic situation of seasonally varying vegetation 
growth rates. 

The models are then extended to a situation with 
two herbivores grazing a single resource, in order to 
deduce the effects of pasture pests on the stability of a 
grazing system, the general forms of the damage 
functions, and some estimates of economic losses. 
Grazing models with two herbivores have not 

previously been considered, and the predator/prey 
equivalent has also received little attention (but see 
May et al., 1979). 

The treatment of a pest's competitive effect is 
expanded to include not only grazing but also removal 

of plant cover. This is a qualitatively different effect,
since the pest removes resource 'capital' as opposed to 
'interest'. Many invertebrates effectively feed in this 
way (Harris and Brock, 1972; Davidson, 1979; 
Barlow, 1985a), and are referred to here as 'denuding' 
as opposed to 'grazing' pests. Weeds such as thistles 
and rushes have the same effect - removal of pasture 
area - for a different reason. 

Finally, brief consideration is given to 'extensive' 
two-herbivore grazing models, in which herbivore 
numbers vary.

Models
The simple equilibrium model 

Noy-Meir's models reduce a grazing system to its 
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dynamic essentials, namely the equilibrium states
achieved through the interaction between growth and 
consumption, both expressed as functions of the 
amount of vegetation present. These functions can 
take a number of different forms, and the results of 
16 combinations have been analysed for 
vegetation/single herbivore systems by Noy-Meir 
(1978b). Rather than consider all of these, the present 
paper uses growth and consumption functions which 
recent evidence suggests are among the most realistic 
and at the same time embody all the qualitative 
features likely to be revealed by alternative models. 

A typical growth function for the vegetation is: 

 G= rV (1- V/K) ,..........................................1 

 1 + (1-2p)  V 
                          p2     K 
where G= net growth rate (kg green dry matter (DM) 
                 ha-1 day-1 
 r = maximum specific growth rate (G/V as 
                 V 0) 
 V = vegetation density (kg green DM ha-1) 
 K = vegetation density at which growth is zero 
 (kg green DM ha-1) 
 p = V at which G is maximised, as a proportion 

of K (i.e. G is a maximum when V = pK). 
Maximum net growth rate Gx = rp2K (= rK/4 for the 
symmetrical, logistic growth curve). 

This is a general function giving a dome-shaped 
curve which is symmetrical, peaked to the right or 
peaked to the left, depending on the value of p. 
Rightward - peaked vegetation growth curves (p > 0.5) 
have not been observed, however, 

Provided p< 0.5, equation 1 can be partitioned 
into an asymptotic, Michaelis gross growth function 
and a linear senescence one, with senescence rate m 
(= rp2/(1-2p)): 

G= (r+m)V -mV 

 1+ rV 
 mK 

If p = 0.5 (the logistic), equation 1 partitions into 
a logistic rather than Michaelis gross growth curve and 
a linear senescence function. 

The growth function is also equivalent to 
function G3 in Noy-Meir (1978b) and when plotted is 
virtually indistinguishable from the gross growth curve 
of White et a1. (1983) combined with linear 
senescence: 

The consumption function for herbivore 1 (the 
stock) is assumed to take a sigmoid form: 
 C1 = H1cV2 ...................................................................2
 A2+V2 
where C1 = consumption rate for H, individuals 
 of herbivore 1 (kg green DM ha-1 day-1) 
 c = maximum per capita consumption rate 
 a= vegetation level at which consumption is 
 50% of the maximum 

This function embodies limitation by appetite at 
high vegetation levels, and by ability to prehend 
herbage and maintain bite size at low vegetation 
levels. However, the growth and consumption 
functions could equally relate to the multiplication of 
scattered items or clumps of palatable food, and their 
discovery and ingestion by searching herbivores; such 
a situation is more analogous to predation. 

Fig. 1 shows that a per capita consumption 
function (i.e. C1/H1) with a= 600 is a reasonable 
compromise among a range of published curves for 
sheep. The overall grazing model is thus: 
 V = rV(I- V /K) – cH1V2 ........................................ 3
                    1+(1-2p) V     a2+V2 
       p2     K 
 = 0 at equilibrium 

 
G=(r+m) V (1+r) 

-V/K_
mV 

                                     m                       

Figure 1: Relative intake (I) in relation to green herbage 
Present (V, tones green DM ha-1).          Model, - - - - - 
Outer bounds of a range of published relationships (Bircham, 
1981; Arnold and Dudzinski, 1967; Freer et al. 1970;  
McKinney, 1972; Vickery and Hedges, 1972; Arnold, 
Campbell and Galbraith, 1977; Curll and Davidson, 1977; 
White et al., 1983). 



 
BARLOW: GRAZING MODELS WITH TWO HERBIVORES 

Finally, a generalised function for animal 
 productivity relates this linearly to intake: 
 
 p=gH1    cV2    f                                                     4 
                    a2+V2 

Where  g = a conversion factor 
                     f = maintenance requirement or per capita 
                           intake rate at which productivity is 
                           zero, in terms of DM ingested 

P = productivity (e.g. weight gain ha-1 
 Day-1, milk yield ha-1 day-1) 

To exemplify the grazing situation the parameters 
are initially given the following values, characteristic 
of a New Zealand pasture set-stocked with hoggets: 
K=4000, Gx=30, c=2, a=600, g=0.187, f=0.8. P 
(productivity) in this case measures liveweight gain. In 
practice, two values for the growth curve parameter 
(p) are of interest. p = 0.5 gives a symmetrical logistic 
or sigmoid growth curve, which is well-known and 
widely used (Brougham, 1956; Christian et al., 1976; 
Noy-Meir, 1976). p= 0.35 gives an asymmetric, 
leftward-peaked curve which recent evidence suggests 
is more realistic, at least for continuously grazed 
swards (Bircham and Hodgson, 1983; Parsons et al., 
1983). Since the two growth functions are standardised 
to the same Gx and K, r is different for each (0.03 for 
the logistic, 0.061 for the asymmetric). 
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Figure 2: The relationship between rates of growth (G, 
____________) or consumption (C, ---------------- ) , both kg ha-1 

day-1 and green herbage present (V, tonnes green DM 
ha-1). The two growth curves correspond to different values 
of p, and the two intake curves to different stocking rates, 
H,. Points A, B, D and E are described in the text. 

Fig. 2 shows consumption rates for two stocking 
rates and both growth curves (logistic and asymmetric) 
as functions of V. Such a grazing system is well 
described by Noy-Meir (1975) and May (1977) but will 
be briefly reviewed here. In Fig. 2 the vegetation will
stabilise where the curves intersect and growth equals 
consumption (e.g. point A). The vegetation level a,pd 
stockjng rate at which this occurs are denoted V 
and H. If some disturbance causes V to exceed V, 
then consumption. exceeds growth and V therefore 
declines back to V; if V drops below V the reverse 
occurs and V increases back to V . The equilibrium 
point at A is therefore stable, meaning that the 
vegetation will return to its original state following 
disturbance. Points B and D are similar but point E is 
different, since an increase in V causes growth to 
exceed consumption and V to increase still further. E 
is therefore an unstable equilibrium point. 

For the logistic growth curve, at low stocking 
rates a single, stable equilibrium exists at A in Fig. 2. 
As stocking rate increases (i.e. the total consumption 

curve rises), V declines and the single equilibrium 
is suddenly replaced by three, two of which are 
stable (B and D) and one unstable (E). At such 
a stocking rate (16 in Fig. 2), if V is below E the 
system will tend to point 0; if above E then it will 
tend to the upper equilibrium at B. Such a system 
with multiple stable equilibria is referred to as 
discontinuously stable (Noy-Meir, 1975).  

Figs. 3a and.b show the isoclines representing V 
values for every H1, given by the intersections in Fig. 
2 for different stocking rates but calculated in practice 
from equation 4. The isocline for the logistic model 
(Fig. 3a, solid line) exhibits a discontinuity or fold, 
and hence a safe capacity (Noy-Meir, 1978b) or 
maximum stocking rate at which a single, stable 
equilibrium exists. For other growth/consumption 
curves there may also exist a 'maximum capacity', the 
stocking rate at which V =0. In Fig. 3b no such 
stocking rate exists, and maximum capacity will be set 
by the minimum per capita intake necessary for 
survival rather than exhaustion of vegetation. Figs. 3c 
and d (solid lines) show the productivity/stocking rate 
relationships at equilibrium for the two models (i.e. 
the values of P corresponding to the H and V 
combinations, from equation 3). Productivity per unit 
area increases then declines with increasing stocking 
rate, the decline being considerably less steep for the 
asymmetric growth model than for the logistic. In fact 
the curve for the former is not unlike the empirical 
model of Jones and Sandland (1974) and may provide 
some theoretical basis for their observed relationship. 

*
* 

* * 
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*
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The significance of discontinuous stability lies in
the fact that small incremental increases in stocking 
rate can give sudden and dramatic reductions in 
herbage levels and productivity (Figs. 3a and 3c), and 
that to re-establish the original state, stocking rate 
may have to be reduced well below the point at which 
the decline in vegetation originally occurred. In other 
words, there is a hysteresis effect in which an 
undesirable state is more readily achieved than cured; 
the greater the fold in Fig. 3a the greater the problem 
of recovery. This fold may also be referred to as a 
simple catastrophe, in fact the simplest possible 
(Saunders, 1980). Productivity is maximised in Fig. 3c 
at the stocking rate at which the discontinuity occurs, 
so in a variable environment the gains from 
maximising stocking rate must be balanced by the 
increased risk of collapse. As Noy-Meir (1975) points 
out, discontinuous stability also implies that 
experimental trials involving continuous uncontrolled 
variation in initial herbage levels may yield two 
qualitatively different outcomes in terms of 
productivity under the same (high) stocking rate (see

Fig. 3a). By contrast, the system involving the 
asymmetric growth curve in Fig. 2 is continuously 
stable; there exists only one stable equilibrium at all 
stocking rates up to the maximum sustainable. This is 
fairly obvious by inspection of the shapes of the 
curves in Fig. 2, and can be demonstrated numerically 
by solving equation 3 for H, in terms of V, given the 
parameter values and in particular the value of p 
determining the shape of the growth curve. 
Unfortunately the system has no simple analytical 
solution, hence no explicit criteria for discontinuity 
except when p = 0.5 (the logistic). In this case it is 
discontinuously stable if a/K<1/3 3 . (May 1977). 
More generally, as Noy-Meir (1978b) points out, 
discontinuous stability is most likely in systems where 
a is small (i.e. consumption satiates at low V) relative 
to pK (the level of V at which growth peaks). 

Model with varying growth rates 
In most temperate pastures, growth rates vary 
seasonally and the equilibrium model, which assumes 
that r and K are constant and the vegetation stabilises 
at some fixed level, is no longer strictly applicable. 
However, while the vegetation level will change in a 
seasonal model, there is clearly a steady state possible 
at any given stocking rate, such that total herbage 
gains balance total losses over the year. The question 
therefore arises as to whether the conclusions of a 
simple equilibrium model change when it is applied to 
a pasture in long-term equilibrium but with a 
seasonally varying growth rate. In particular, is the 
stability of the system and the relationship between 
average vegetation level and stocking rate affected, 
and does the productivity/stocking rate curve change? 

Noy-Meir (1978a) addressed the problem of 
seasonality in terms of changes in V over a fixed 
period corresponding to the growing season. The 
approach adopted here was to run the model as a 
simple simulation with K and Gx varying sinusoidally 
throughout the year with amplitudes of ±50% and 
75% respectively. 

The outcome is shown by the dashed lines of Fig. 
3. The effect is to increse stability, converting the 
discontinuously stable model into a continuously 
stable one (Fig. 3a), and to displace the 
productivity/stocking rate curves downwards and to 
the left (Fig. 3c). Maximum productivity is thus 
reduced, and the decline in productivity at high 
stocking rates is also less marked. The 
productivity/stocking rate curve for the variable 
asymmetric growth model (Fig. 3d) is virtually 
identical to one for an equilibrium model with reduced 

Figure 3: a) and b) Relationships between equilibrium 

Vegetation levels (V, tones green DM ha-1) and stocking 

Rate (H1, sheep ha-1) for the logistic (a) and asymmetric (b) 

growth models.                  constant growth, - - - - - -  

seasonally varying growth. Arrows denote direction of 

change of the vegetation and Hs the safe capacity (see text). 

c) and d) Relationships between productivity at equilibrium 

(P, kg weight gain ha-1 day -1) and stocking rate (H1 ) for 

the logistic (c) and asymmetric (d) growth models. The 

dashed line in d) represents both seasonally varying growth 

and constant growth with r=.07 and K=3000. 

*

*

*

*
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K (3000) and Gx (26 instead of 30) (Fig. 3d), but in
the second case the stable vegetation levels 
corresponding to each H, are considerably lower than 
the average levels under variable growth. 

It seems likely, therefore, that conclusions from 
simple equilibrium models will apply to seasonal 
pastures with the qualifications that the effective 
values of K and Gx (but not necessarily r) are lower 
than their actual means, stability is greater and the 
decline in productivity at high stocking rates less 
marked. Numerical studies suggest that the increased 
stability manifested in Fig. 3a only occurs if the 
period associated with the variation is long. Discrete, 
regular yearly or half-yearly variations in growth 
parameters have a similar effect to the sinusoidal 
oscillation, but shorter periods of alternating or 
randomly varying values, as a result of weather effects 
on pasture growth for example, have much less effect 
on the shape of the solid curve. 

The effects of pests are therefore considered in 
relation to the asymmetric equilibrium growth model 
with adjusted parameter values K = 3000 and Gx = 26 
(r = .07), giving the dome-shaped productivity/stocking 
rate curve in Fig. 3d (dashed line). Experimental 
evidence and the results of more detailed models also 
suggest that this shape is realistic (Jones and 
Sandland, 1974; White et al., 1983; Monteith, 1972; 
Suckling, 1975), but the consequences are briefly 
considered of a more steeply descending curve such as 
that in Fig. 3c (dashed line). Numerical studies 
confirmed that the effect of pests predicted by the 
seasonally varying model was the same as that 
predicted by the modified equilibrium one. 

Results 
Effects of grazing pests 

If the consumption function for the second herbivore 
(pest) takes the same form as that for the stock (H1),
the overall model is: 

 
V= rV(1- V/K) – cH1V

2 – dH2V
2 

              1+ (1-2p) V    a2+ V2    b2+ V2 
                      p2        k 
 where d = maximum consumption rate of the pest (kg 
 green DM ha-1 day-1) 
 b = V at which individual consumption rate is 
 half maximum 
 H2 = pest density (ha - I) 
 In this case the equivalent isocline diagram to Fig. 
3b will have a second horizontal axis representing the 

equilibrium pest density, H2 at right angles to that for 
H1. and the V versus H1 and H2 relationships will 
form a surface. If there is a fold in either the V /H1 or 
V /H2 relationships, then the overall system will be  
discontinuously stable and there will be a range of H1 
and H2, combinations for which two stable vegetation 
equilibria exist (Fig. 4). The 3-dimensional fold in Fig. 
4 is known as a cusp catastrophe (Saunderj, 1280), 
after the shape of its projection onto the H1/H2 axis 
and as distinct from the 2-dimensional fold 
catastrophe of Fig. 3a. Thus, if one of the two 
herbivore/vegetation systems is discontinuously stable, 
so too will be the combined system. The presence of 
pests will therefore convert a continuously stable 
grazing system into a discontinuously stable one if b is 
small. Though little data exist, this may well be the 
case, since pests are generally smaller than the 
productive stock and presumably more efficient at 
grazing low levels of vegetation. Two extreme 
situations can thus be envisaged, in which 
consumption is unaffected by vegetation availability 
(b = 0) or is affected in the same way as for the stock 
(b = a). 

Figs. 5a and b show the effects of grazing pests 
such as rabbits at 60 ha-1, with potential daily intake 
d= 0.2 and b= a= 600 or b = 0. With b = 600 there is 
no effect on stability, since the pest is equivalent to 
adqitional stock units (1 pest = d/c stock units), and. 
the shape of the vegetation isocline in Fig. 5a remains 
the same. The effect on productivity is to displace the 
curve in Fig. 5b downwards and to the left. This is 
characteristic of all negative influences on the grazing 
system, such as reductions in pasture exponential 
growth rate r or ceiling yield K, and variability in 
growth (Fig. 3d). The two important consequences are 
that the absolute reduction in productivity is greater at 
a high initial stocking rate (e.g. the optimum of 15 
ha-1 in Fig. 5b) than at a lower one, and that at a 
high initial stocking rate, productivity in the presence 
of the pest is maximised by reducing the stocking rate. 
As a corollary, this shows why many farmers stock at 
a lower level than might be suggested by average 
pasture growth rates; variability in growth reduces the 
optimum stocking rate (Fig. 3d). Further, the effect of 
successive displacements of the productivity curve due
to increasing pest densities is to reduce productivity at
any fixed stocking rate by ever greater amounts, since
the stocking rate now corresponds to the declining 
portions of the new curves. The effect of the pest on 
productivity is thus non-linear, and the steeper the 
right hand side of the productivity/stocking rate curve 
the greater the non-linearity and the effect of the pest. 
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The equilibrium logistic model in Fig. 3c represents
the extreme case, in which the system would become 
suddenly unstable for a small additional increment in 
pest density. 

If the ultimately efficient grazing pest is now 
considered, for which b = 0, the vegetation isocline 
takes a different form (Fig. 5a). The system is 
discontinuously stable and has a maximum sustainable
stocking rate in the presence of the pest (10.6 in this 
example). Moreover, there is a lower critical level of V

(about 200 kg/ha-1 in Fig. 5a) such that if V once 
falls below this, no reduction in stocking rate will 
permit recovery. The effect on productivity is also 
more dramatic, with the pest's impact and the 
steepness of the right hand side of the 
productivity/stocking rate curve both greatly increased 
(Fig. 5b); the latter also implies greater non-linearity 
in the pest density/productivity relationship. * 

Figure 4: The surface giving equilibrium vegetation levels (V)

as functions of stock (H1) and pest (H2) densities, where the

individual stock/vegtation system is continuously stable and

the pest/vegetation one is discontinuously stable. The shaded

area represents a projection of the fold in the surface onto

the H1/H2 plane, and the combinations of H1 and H2 at

which two stable and one unstable vegetation equilibria exist.

* *

*

* * * *

Figure 5: a) The effects of grazing pests such as rabbits, and

denuding pests such as porina larvae (Wiseana spp.) on the

equilibrium vegetation (V, tonnes green DM ha  )/stocking

rate (H1) relationship for the modified asymmetric growth

model (see text).               no pests,           grazing pests at 60

ha  , b = a;            grazing pests at 60 ha   , b=0;

denuding pests removing 20% pasture area. Arrows indicate

direction of vegetation change. b) The effects of pests as

above on the equilibrium productivity (P, kg ha

day   )/stocking rate (H1, sheep ha  ) relationship.

*
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The shapes of the relationships between 
productivity and pest density are shown explicitly in 
Fig. 6a for initially optimum and 75% optimum 
stocking rates (15 and 11.25 ha-1) and for stocking 
rate which is varied so as to maximise productivity at 
any pest density, in all cases for b = a. 

Varying the stocking rate gives a linear 
relationship, and losses arise from the stocking rate 
reduction equivalent to the pest density (based on the 
ratio of potential consumption rates of each if b = a, 
that is, 60 pests ha-1 equate to 6 stock units ha-1 if 
d= c/10). In Fig. 6b, losses are expressed as 
proportions, so the slope of the line would be 
different at different initial stocking rates. For 
instance, if stocking rate were adjusted to be always 
75% of the optimum rather than the optimum, per 
capita productivity would be higher and the effect of a 
given pest density would therefore be the same loss in 
stock units but a greater loss in total productivity. 
Moreover, the initial per hectare productivity would 
be lower. For both reasons, therefore, the 
proportional loss and the slope of the solid line in Fig. 
6b would increase at sub-optimum stocking rates. This 
applies only to grazing pests (see below). 

At a fixed stocking rate, per hectare losses are  
due to a reduction in per animal productivity and tend 
to be non-linearly related to pest density (Fig. 6a), as 
discussed above. 

Fig. 6b shows the damage functions, relating 
losses to pest density for high, low and varied stocking 
rates. In the first two cases initial losses, whether 
expressed as percentages or in absolute terms, are 
respectively greater and less than those if stocking rate 
is varied. Fig. 6b also shows the more non-linear 
function for b = 0 at the fixed optimum stocking rate. 

Particularly for invertebrate grazers, the pest's 
effect may be concentrated in patches. If the stock are 
assumed to be mobile over the whole area, V in a 
pest-infested patch will be the same as that over the 
rest of the area. Per capita consumption rate of the 
pest will therefore be the same within the patch as it 
would be outside it, and since the pest's contribution 
to overall consumption depends only on the per capita 
consumption rate and on the product of (density x 
proportion of area infested), the effect of patchily- 
distributed grazing pests is equivalent to that of 
uniformly distributed ones at a corresponding lower 
density. In fact, unless the damage functions in Fig. 5 
are linear it is essential to average pest densities over 
the whole farm before calculating per hectare losses. 
The estimate of losses based on the average whole-farm 
pest density (or cover loss in the case below) is then 
divided by the proportion of the farm affected to give 
per hectare losses on that portion (Barlow, 1985a). 
Effects of denuding pests 

The situation is now considered in which a certain 
proportion of the pasture is totally denuded of 

Figure 6: a) The effect of grazing pasts (H2, rabbits ha  ) on

equilibrium productivity (P, kg weight gain ha  day  ) at

different stocking rates: 1(         ) fixed, optimum (15 sheep

ha  ); 2(         ) fixed, 75% optimum (11.25 ha  ); 3

(         ) variable, optimum at all pest densities. b) The

damage function for grazing and denuding pests:

proportional losses in productivity (L) in relation to grazing

pest density (H2, ha  ) or proportional loss in pasture cover

(q). Curves 1, 2, 3 as above, for grazing pests with b=a at

different stocking rates; 4 (         ) grazing pest with b=0,

stocking rate optimum; 5 (         ) denuding pest, stocking rate

optimum. Curve 3 (         ) also represents the effect of a

denuding pest on stocking rate if per capita productivity is

maintained irrespective of the initial stocking rate.
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palatable vegetation by the action of a pest, weed or
anything else. In other words, what is the effect of the 
loss of a given area (effectively an increase in stocking 
rate) rather than the loss of a given daily increment 
through grazing? The crucial difference is that the loss 
in potential growth through grazing depends only on 
the consumption rate of the pest, whereas that lost 
through denuded cover depends both on the area 
affected and the potential growth rate of the pasture. 
In other words, the effects of a denuding pest on 
pasture and animal productivity would be expected to 
be proportional rather than absolute; a given area 
denuded would give greater losses in a high-producing, 
highly-stocked pasture than in a low-producing one. A 
steady state is assumed, which can represent any of 
the following situations: (a) the proportion bare 
actually increasing owing to continued pest attack, but 
assumed to be constant at its mean level over the 
period considered; (b) the aftermath of pest attack, 
with no compensation by the vegetation; (c) 
recolonisation by vegetation balancing its continued 
removal by pests, the proportion bare reaching a 
steady value. 

The effects of denuded pasture on equilibrium 
vegetation/overall stocking rate relationships are more 
easily derived than are those of a grazing pest. 
Productivity per unit total area is given by equation 4 
as before, where H, is again the number of stock per 
unit total area. However, the equilibrium vegetation 
level is lower since the effective stocking rate on the 
vegetated area is now H1/(l-q) where q is the 
proportion of pasture lost. Per capita consumption 
rate cV2(a2+ V2) in equation 4, hence P, is therefore 
reduced. As for a grazing pest with b = a, there is no 
effect on the system's stability (Fig. 5a) and the 
productivity/stocking rate curve is displaced 
downwards and leftwards with no significant change 
in shape (Fig. 5b). Again, therefore, losses are 
considerably greater at a high stocking rate than at a 
low one and increase non-linearly with pest density 
(Fig. 6b); small reductions in pasture area, particularly 
at low stocking rates, have little effect on productivity 
but this effect rapidly increases as additional pasture is 
lost. As Fig. 5b suggests, reducing stocking rate 
maximises productivity and, other things being equal, 
the proportional reduction will equate to the 
proportional pasture loss whatever the initial stocking 
rate. The slope of the solid line in Fig. 6b is thus 
constant, whereas that for a grazing pest increases at 
sub-optimum stocking rates (see above). Lost pasture 
area is assumed directly proportional to pest (or weed) 
density (e.g. McLaren and Crump, 1969; Barlow,

1985a), though in the case of weeds there will be some 
variation due to differences in individual plant sizes, 
and in the case of pests there may be competition at 
high densities, reducing the denuded area per pest. 
The latter will tend to reduce the non-linearity in the 
productivity/pest density relationship. 

Economics of Pasture Pest Attack 

The economic effect of pests is most easily assessed in 
terms of a stocking rate reduction. For grazing pests, 
dollar losses per hectare (D) are simply: 

D=GM.H2d/c 

that is, the gross margin per stock unit (GM) 
multiplied by the pest's equivalent in stock units (i.e. 
the product of pest density and the ratio of 
consumption rates, if b = a). Taking GM = $21 for a 
sheep breeding system (Anon, 1986) and d/c=0.1 
gives losses for rabbits of $2.l/rabbit. 

For a denuding pest, losses equate to the per 
hectare gross margin (GM.H1) multiplied by the 
proportional loss in pasture area, q: 

D= GM.H1H2q' 

where q' = average area removed per pest so that 
q = q'H2. Thus, the moth larva porina (Wiseana sp.) 
denudes an average of 36 cm2 of pasture area over a 
year (Barlow, 1985a), and using GM = 21 gives losses 
of $0.076/stock unit/porina m-2. Losses from a 
denuding pest therefore depend on gross margin per 
hectare, whereas those from a grazing pest depend on 
gross margin per stock unit. 

Economic losses are much more difficult to assess 
if stocking rate is maintained in the face of pest 
attack, but the simple grazing model, and in particular 
Fig 6b, allow some useful approximations to be made. 
It is necessary, first, to assume that the dome-shaped 
productivity/stocking rate curve of Fig. 5b, upon 
which Fig. 6b is based, is realistic as a general 
description. This seems a reasonable assumption in 
terms of its derivation and agreement with empirical 
data (see below). If so, then changing the parameters f 
and g of equation 4 to include variable costs per stock 
unit and price per unit product will change the axes of 
Fig. 5b but not its shape (see Appendix I). The shape 
of the resulting gross margin ha-l/stocking rate curve 
also agrees with the results of experiments and more 
detailed models (e.g. White et al., 1983; Spath, 
Morley and White, 1984). Thus, the proportional 
reductions in productivity given by Fig 6b can also be 
interpreted as proportional reductions in per hectare 
gross margin.
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Although the curves 1 and 2 in Fig. 6b are non
linear, for moderate pest infestations (about 10% in 
terms of lost pasture area or the pest's equivalent in 
stock units relative to the actual stocking rate), their 
initial slopes compared with that of line 3 give an 
indication of the losses due to pests at fixed stocking 
rates, relative to those if stocking rate is reduced. The 
curves are similar for denuding and grazing pests 
(compare curves 1 and 5 in Fig. 6b). Such a 
comparison suggests that the formulae for losses given 
above must be multiplied by a factor of approximately 
1.2 if stocking rate is held constant at the economic 
optimum, and 0.5 if it is constant at 75% of the 
optimum. The latter is an average figure and in 
practice differs slightly for grazing and denuding 
pests. Thus, losses at a fixed stocking rate may be 
greater or less than those if it is reduced, depending 
on the level of the fixed stocking rate relative to the 
economic optimum. If the latter is unknown, 
therefore, it seems reasonable to approximate losses at 
a fixed stocking rate by those calculated more easily 
on the basis of a stocking rate reduction. 

Applying the above factors to rabbits and porina 
gives the estimates of losses in Table 1. Allowing for 
differences in costs and prices, the results for porina 
are similar to those from the more detailed model of 
Barlow (1985a). 

Table 1: Estimates of economic losses caused by rabbits and
porina caterpillar in a sheep breeding enterprise. These 
assume a gross margin per stock unit of $21 (1986 prices) 
and change proportionally as this value changes, either for 
other stock classes or with changes in costs and prices. 
SU=stock unit. 

Economic Losses 
$ per rabbit            $/SU/porina m-2

Stocking rate reduced; per   
    animal output maintained  2.1 0.076
Stocking rate constant at the   

economic optimum  2.5 0.091
Stocking rate constant at 75 %   

optimum       1.1 0.038

All these results relate strictly to sustained pest
attacks. For short-term ones it is necessary to assume 
that the response is rapid and that the effect, over the 
period for which it acts, is equivalent to that of the 
same sustained change. The other assumption, that 
losses at fixed stocking rates are linearly related to 
pest density when the latter is low, can be relaxed and 
explicit values given for any pest density and stocking 
rate, if the productivity and per hectare gross margin 
versus stocking rate curves (e.g. Fig. 5b) are 

approximated by an equation of the form: 

 P = uH - vH ......................................................... 5

This describes dome-shaped curves with varying 
degrees of asymmetry. For instance, Jones and 
Sandland (1974) show that many experimental trials 
yield a productivity per hectare/stocking rate 
relationship which is a combined linear/quadratic 
equation, similar to equation 5 with = 2. Stocking 
rate trials of Monteith (1972) and Suckling (1975) 
yield per hectare gross margin/stocking rate curves for 
sheep systems of the same form with  = 3 and  = 2 
respectively, given meat and wool outputs and 
1986/87 costs and prices (Anon, 1986). The detailed 
model of White et al. (1983, Fig. 8) gives a net income 
per hectare/stocking rate curve fitted by equation 5 
with  = 3, and the model of Spath et al. (1984, Fig. 
2b) yields one with  = 2.5. The adjusted asymmetric 
model above (Fig. 3d, dashed line) is similar to 
equation 5 with  = 3 but has a slightly sharper peak. 
Given this equation, therefore, if effective stocking 
rate increases by a factor s (= 1/(1- proportion 
denuded)) for a denuding pest, and (1 + dH2/cH1) for 
a grazing pest), then the factor by which productivity 
or gross margin change is:

F = - (sh) -1

 - sh 

where h = stocking rate/optimum stocking rate (see 
Appendix 2). Given data like the above, which enable 
the actual productivity or gross margin/stocking rate 
curve to be estimated, this formula allows losses to be 
estimated independently of the grazing model. 

Even more directly, losses can be estimated 
graphically from a curve fitted statistically or by eye 
to the data (e.g. the solid line in Fig. 7). The 
productivity/stocking rate curve (dashed line in Fig. 7) 
for any percentage cover loss from a denuding pest, or 
grazing pest density (with b = a), is most easily 
constructed by considering the stocking rate reduction 
needed to maintain per capita productivity. For a 
denuding pest this must equal the percentage pasture 
loss and for a grazing pest it is the pest's equivalent in 
absolute stock units (dH2/c). Given an arbitary initial 
stocking rate D, and its per hectare productivity ED, 
B is the point on OE (i.e. with the same per capita 
productivity) such that BF (=c D) equals the stocking 
rate reduction, either as a percentage of OD or as the 
required fixed number of stock units. Repeating the 
process for a set of initial stocking rates, D, gives the 
corresponding points, B, hence the dashed curve for 
that pasture loss or pest density.
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Figure 7: Graphical derivation of the effect of pests 
( ----------- ) on an empirical productivity (P)/stocking rate 
(H) curve. See text for explanation. P measures weight gain 
(kg ha-1); H is stock units ha-1.

Discussion and Conclusions 

Graphical consideration of the productivity/stocking 
rate relationships and analysis of simple 
herbivore/vegetation interactive models, show that any 
negative influence on the grazing system displaces the 
productivity/stocking rate curve downwards and to 
the left. It follows that the results of such effects will 
be non-linearly related both to stocking rate and the 
intensity of the effect. The greater the asymmetry of 
the productivity/stocking rate curve the greater the 
non-linearity of the response to changes or 
perturbations affecting the pasture. Where this non- 
linearity is pronounced, the presence of anyone of the 
above effects therefore sensitises the system both to 
further increments of the same effect or initial 
increments of another. 

The presence of a second grazing herbivore 
affects both the productivity and the stability of the 
grazing system. A herbivore which denudes pasture 
affects productivity but not stability, although by 
increasing effective stocking rate it may increase the 
likelihood of dramatic productivity declines in existing 
discontinuously stable systems. 

The shapes of the damage functions are similar 
for grazing pests and denuding pests (Fig. 6b), lying 
between those for foliage-attacking and product- 
attacking crop pests (Southwood and Norton, 1973); 
the reduction in proportional losses as stocking rate is

reduced, however, has no obvious crop parallel. The 
shapes of the functions are strongly dependent on 
stocking rate, the form of the vegetation growth curve 
and grazing efficiency of the pest and stock (especially 
the ratios b/K and a/K). In practice, however, the 
initial slope is likely to be more important than the 
non-linearity. This is because pest densities must be 
averaged over whole farms before assessing their 
impact on overall animal production, and these 
average densities are frequently quite low. If so, then 
within this range the damage functions may be 
considered approximately linear (Fig. 6b). The effect 
of grazing efficiency (b) is also less marked at low pest 
densities (Fig. 6b), so again the pest's behaviour can 
be approximated by that of the stock (i.e. b assumed 
equal to a). 

In theory at least, stocking rate adjustments 
provide a way of managing the pest equivalent in 
many respects to direct control. The correspondence is 
clear in Fig. 6a, if productivity on the vertical axis is 
replaced by net revenue (see for example Norton, 
1979, Fig. 7). Curve 1 represents no control in both 
cases. Curve 2 corresponds to insurance through 
regular, calendar spraying or reducing stocking rate, 
both reducing the impact of the pest but carrying a 
constant cost irrespective of pest density. Curve 3 
represents monitoring and either spraying when 
necessary or adjusting stocking rate when necessary; if 
the cost of monitoring is included, the line would be 
displaced downward by a small constant amount at all 
pest densities. 

Assessing the impact of pasture pests on farming 
systems is extremely difficult. Farmlet studies (Kain 
and Atkinson, 1972; Thompson et al., 1985), and 
simulation (Barlow, 1985a) are obvious alternatives, 
but a common short cut has been to cost the pests' 
effect as an equivalent reduction in stocking rate (eg 
McLaren and Crump, 1969). As the above results 
make clear, however, this represents a response to pest 
attack rather than an estimate of its effect, and there 
is no way of knowing how similar the damage 
functions are. However, the simple grazing model 
(Fig. 6b) compares these functions and suggests that it 
may be appropriate to cost pest effects in terms of a 
stocking rate reduction, even if the true effect is to 
reduce per capita productivity at a fixed stocking rate. 
This will at least give a useful average estimate, 
though true losses could be slightly greater or 
significantly less than the estimate depending on the 
level to which a particular farm is stocked. 

The nature of the damage function also bears on 
the design of field trials to estimate pest impact. 
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Since, at a fixed stocking rate, losses depend as much
on the stocking rate chosen as the pest's effect, and 
since the relationship between the selected stocking 
rate and the theoretical optimum will generally be 
unknown, less equivocal results are likely to be 
obtained by adjusting stocking rate to maintain per 
capita productivity. The use of two fixed stocking 
rates partly overcomes the problem but still leaves the 
question of extrapolation to a farm situation; carrying 
capacities are typically higher in small-scale trials. 
Using a variable stocking rate enables results to be 
expressed in proportional terms and hence more 
readily translated to other situations, since the model 
shows that proportional reductions do not depend on 
the initial choice of stocking rate so long as per 
animal production is maintained. 

Consideration of pests as 'denuders' as well as 
'grazers' has gone some way towards incorporating 
the range of feeding behaviour exhibited by 
invertebrates. However, this is still a considerable 
simplification in at least two respects. One is the 
interaction between pasture growth rate and damage 
for patchily distributed invertebrates. Since these are 
often relatively immobile, the same pest may switch 
from a localised grazer to a denuder if consumption 
exceeds growth within a small area and the pasture is 
thereby destroyed. This is most likely to occur during 
periods of low herbage growth rates and is exemplified 
by the increased effect of Argentine stem weevil 
(Listronotus bonariensis) (Kurchel) during summer 
droughts (Prestidge, van der Zijpp and Badan, 1984). 
The reverse may also occur, with a denuding pest 
having effects more akin to a grazing pest as 
vegetation density increases. Such is the case for 
porina (Barlow, 1985d). The second type of behaviour 
not obviously covered is root feeding, by pests such as 
scarab beetle larvae. These, too, may best be treated 
as denuding pests. Given that their distribution is 
frequently aggregated, overall damage over a large 
area can be measured in terms of the number and size 
of patches in which density is high enough to destroy 
the pasture (e.g. Kain, 1975). Again, though, this will 
depend on pasture growth rate, with the extremes 
being no damage or denuding rather than the 
grazing/denuding combination already mentioned. 

Finally, three points arise from the analysis which 
bear on the more general theory of herbivore/plant 
interactions. The first concerns the extension of a one 
herbivore/vegetation model to a two 
herbivore/vegetation one, which this paper considered 
in the context of an 'intensive' system (i.e. herbivore 
numbers fixed; Caughley, 1975). What happens in the 
corresponding 'extensive' situation with herbivore

numbers varying? The two commonly used models of 
this kind share the same vegetation growth equation 
with the intensive model described here, but differ in 
the form of the herbivore population growth 
expressions. Caughley (1975) refers to these as the 
'laissez-faire' and 'interferential' models, and whereas 
both apply to a single herbivore/vegetation 
interaction, only the interferential model can be 
extended to two herbivores. This is because the laissez- 
faire contravenes the competitive exclusion principle, 
the performance of each herbivore depending entirely 
on the quantity of the same resource. For each, there 
exists only one vegetation equilibrium (i.e. level of V 
at which H = 0) so coexistence is impossible. The 
'interferential' model, on the other hand, yields a 
herbivore isocline (relating H to V when V = 0) which 
is a function of both H and V, so at any given level of 
V both populations can persist at equilibrium. 
Essentially, this is because the model subsumes a 
degree of self-regulation within each herbivore 
population. Not surprisingly, therefore, it forms the 
basis for the few 'extensive' two consumer/resource 
models in the literature (e.g. May et al., 1979), though 
the biology implicit in the model is somewhat unclear 
(Barlow, 1985b). 

Secondly, it appears on theoretical grounds that 
discontinuous stability may be less widespread in 
grazing systems with or without pests than Noy-Meir 
(1978b) indicates. This is because growth curves for 
pasture now appear to be leftward-peaked rather than 
symmetrical (see above), which reduces the likelihood 
of discontinuous stability. Although Noy-Meir 
considered such a model to be generally 
discontinuously stable, his example is based on values 
of 500 and 25,000 kg ha-1 for a and K respectively. 
The former is reasonable but the latter, deriving from 
the standardising procedure used, is excessively high. 
Measurements on New Zealand ryegrass/white clover 
swards (C.C. Bell, unpublished data) suggest ceiling 
yields for green matter, on which the model is based, 
of around 5000-6000 kg ha-1 in spring and 2000 kg 
ha-1 in winter. Ceiling yield of green leaf, which 
comprises the majority of sheep intake, is nearer 
1500-2000 kg ha-1 (Tainton, 1974), which would 
greatly reduce the likelihood of discontinuous 
stability. Moreover, Noy-Meir's criteria (1978b, Table 
4) for discontinuity in one of the commonest 
growth/consumption models of this kind (his 
Michaelis/inverted exponential (G3/C2) model) appear 
to be incorrect, and the model to be continuously 
stable over a much wider parameter space than the 
author suggests. The discontinuous stability in a recent 
detailed grazing model (Johnson and Parsons, 1983) is 
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probably due to an unusually abrupt intake function.
Finally, it appears that growth rate variations 

enhance stability of grazing systems. Since most 
pastures display both seasonal and yearly variations in 
growth, this too suggests that discontinuous stability is 
less likely than simple equilibrium models would 
imply. 

In conclusion, the simple models described here 
have helped clarify the nature of pest effects in 
pastures and have suggested typical forms for the 
damage functions. The models also offer an 
approximate method for quantifying economic losses 
from pest attacks and carry practical messages for the 
design of field trials. 
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Appendix I: The shape of the per hectare gross margin 
versus stocking rate curve, compared with the productivity 
versus stocking rate one. 

If the productivity/stocking rate curve is dome-shaped (e.g. 
Fig. 5b) and approximated by an equation of the form. 

P=uH-vHa 

Appendix 2: The proportional effect on animal 
productivity given a proportional effect on posture area or 
pasture consumption rate.

Wether P=per hectare productivity, H is stocking rate and 
u, v and a are constants, then, since gross margin per hectare 
(GM) is simply hP - jH (h = price/unit product, j = variable 
cost per stock unit), the gross margin/stocking rate curve 
will have the same shape: 

 GM = (hu-j)H - (vh)Ha 


