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TIME-SERIES ANALYSES APPLIED TO SEQUENCES OF 
NOTHOFAGUS GROWTH-RING MEASUREMENTS
Summary: Time-series analysis, a relatively uncommon technique in ecological studies, has been applied to 
annual tree growth-ring series. In agreement with earlier North American work, ARMA(1,1) models were found 
to be the predominant form for expressing stochastic growth processes, occurring in 58% of the 36 Nothofagus 
menziesii and N. solandri time-series examined. The remaining 42% conformed to an AR(1) process. The 
average parameter values of {0.79, 0.42} for the ARMA models are remarkably consistent with North American 
work. 

Such derived stochastic models should be regarded as average processes; analyses of first-order 
autocorrelation coefficients indicate fluctuations in absolute value within series, including some short periods of 
independence. An apparent preference for a specific ARMA model with species is better explained by the 
lengths of the series; a shorter time-series is likely to have a simpler stochastic model over time, by virtue of 
lesser precision associated with model parameters. Thus, 81 % of the series longer than 200 years are modelled 
by an ARMA(1,1) process, while 78% of the series shorter than 200, are modelled by AR(1). 

It is suggested that although fitting Box-Jenkins stochastic models to various genera represents an 
interesting area of research, the approximate equivalence of the various models, and their part-dependence on 
series length, negates the need to locate an optimal process in all circumstances. The principal advantage of 
utilising Box-Jenkins models in this application is to render data more suitable for analysis with environmental 
variables, and to enhance cross-correlation and mean sensitivity. 

Keywords: Time-series; Box-Jenkins models; dendrochronology; Nothofagus menziesii; Nothofagus solandri. 

 
Introduction 
Time-series analysis is an area of statistics which 
departs a little from the mainstream of statistical 
theory and practice. The special feature of time-series 
data is that they are usually correlated in time, rather 
than being independent (as is assumed, for example, 
in regression analysis), which gives rise to more 
complicated underlying models. Nevertheless time- 
series analysis is an established statistical technique, 
and the current availability of suitable computer 
programs (e.g. SAS/ETS; Brocklebank and Dickey, 
1986) has greatly facilitated practical application. 

The use of time-series analysis in ecological 
literature is not common; time-series analyses are 
more commonly applied in the social sciences (e.g. 
McCleary and Hay, 1980), although they have also 
been used in applied biology. For example, Ferguson 
and Leech (1978) broached the subject to some extent 
by advocating generalised least squares as an analytical 
tool in growth and yield modelling in forestry. There 
is agreement that at least 50 data are required in order 
for most time-series techniques to be soundly applied 
(McCleary and Hay, 1980; Chatfield, 1985) and this 
prerequisite may exclude many ecological applications. 
One area of ecology where time-series techniques have 
been used is in conjunction with the study of tree 
growth-ring development (dendrochronology) and 
their relationships with climatic variables 

(dendroclimatology) (Fritts, 1976; Norton and Ogden,
1987). Objectives of such applications can be: 
(1)   to explore the resultant structure of time-series 

models, per se, and to categorise their type with 
different species and environmental conditions; 

(2)   to utilise time-series equations to remove serial 
(auto) correlation in growth-ring sequences, thus 
making such data more suitable for analysis with 
climatic variables. 

 In this contribution a brief overview of some 
time-series techniques relevant to the modelling of 
dendrochronological data is given and the techniques 
applied to several ring-width time-series obtained from 
two Nothfagus species (N. menziesii and N. solandri).
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Time-series methodology 
When applying time-series methods to sequences of 
data the measurement interval is assumed equidistant 
or evenly spaced in time; annual growth-rings from 
trees are a good example. 

A time-series is assumed to be composed of four 
components (Kendall and Stuart, 1966): 
(a)   an overall trend, or long-term movement; 
(b)   oscillations about the trend, of greater or lesser 
        regularity; 
(c)   a seasonal effect;
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(d)   a purely random or irregular component, often
referred to as 'white noise', analogous to a 
residual effect postulated in regression models. 

 With dendrochronological series (based on annual 
ring-width measurements), component (c) is, by 
definition, non-applicable. 

Long-term trends in time-series data are 
frequently removed by differencing techniques (e.g. 
Chatfield, 1985; p.21), but more commonly with 
growth-ring data, suitable functions are fitted to the 
series and the residual values used in subsequent 
analyses. Fritts et al. (1969) proposed the use of the 
exponential function: 
 Y = exp( t) +  
where in (1) 

 Y = 
 , ,   = 
 

tree growth-ring increase, at time (year), t
equation parameters, from the tree ring 
sequence 

exp = exponential function 
as a candidate equation. Polynomials and straight- 
lines have also been suggested (Fritts, 1976). More 
recently Warren (1980) proposed the equation (in its 
simplest form): 
 Y = t exp( t)           (2) 
which has the advantage of increased flexibility, and is 
more descriptive of usual tree growth-rate 
development. An alternative approach using digital 
filters has been proposed (Briffa et al., 1987) but as 
the underlying assumptions differ from the above 
methods, is not considered further here. 

Assuming a dendrochronological series has been 
made stationary (that is, long-term trends removed) by 
one of the methods summarised above, the analyst 
requires appropriate models to depict the potential 
presence of component (b), namely short-term 
fluctuations. To achieve this, two stochastic models 
have been developed, so called autoregressive and 
moving-average processes. 

An autoregressive (AR) process of order p is 
given by: 
 Zt = 1Zt-1 + 2Zt-2 +. . . pZt-p+at 
where in (3) 

Zt = (Yt-µ) the deviation of any observation
 Yt from the series mean, µ, at time t 
p = total number of preceding Zt terms 

 i = parameters associated with an AR model 
 (I  p) 

(1)

at = an error term, distributed NID(0, 2), 
 commonly referred to as 'white noise' 

Equation (3) is analogous to a multiple regression 
model, except the predictor variables are past values 
of the dependent variable, Zt. 

Just as a sequence of past radial increments can 
be used as predictor variables, then likewise the 
preceding residual or error terms can be utilised. 
Thus, a moving average (MA) process of order q is 
given by: 

Zt = at - 1- at-1 - 2- at-2-… q- at-q 
where in (4) 

 i = parameters associated with a MA process 
(i q) 

 q = total number of preceding ai terms 

Moving-average models can be difficult to 
visualise, since the ai are never explicitly observed or 
measured. It is sometimes useful to regard each ai as 
an input force or shock which causes perturbations to 
the (output) Zt.  Thus, in the case of tree ring growth 
series, it might be thought of as the many energy 
sources intercepted by a tree, which ultimately result 
in the laying down of cambial cells (radial growth). 

Equations (3) and (4) can be combined to form a 
mixed series which is referred to as an ARMA (p,q) 
process: 

Zt- 1 Zt-1- 2At-2-…- p Zt-p= t- 1at-1- 2at-2-… qat-q (5) 

Such models have been developed and 
investigated at length by Box and Jenkins (1976) and 
form the foundation models of many time-series 
applications. 

Equations such as (5) are purely empirical in the 
sense they are derived and estimated strictly for each 
time-series under scrutiny. To aid decision as to the 
correct order of p and q in (5) the autocorrelation 
coefficient, given by:

(4)

              n                   n     2 
rk =  (Zt x Zt-k)/  Zt 

            t=k                  t=1 
(6)

(3)
where in (6)

n = the length of the series 

k = the chosen interval in time between 
observations, (referred to as the lag) 

can be utilised as a diagnostic statistic. 
The sample 
autocorrelation function (ACF) is given by (6), for k 
= 1,2, . . . ., m, where m < n. Allied identification 
statistics are the partial and inverse autocorrelation 
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functions (Box and Jenkins, 1976). Respective 
plottings of sample estimates against lag k are called 
correlograms. The theoretical correlogram structures 
of specific ARMA(p,q) processes have been 
documented (e.g. McCleary and Hay, 1980; pp. 68-80) 
and comparison to those obtained from actual time- 
series may allow the analyst to deduce the likely order 
of p and q. 

The autoregressive parameters in (5) can be 
estimated explicitly by least-squares methodology, but 
moving average parameters need to be solved 
iteratively, analogous to non-linear regression 
estimation (Draper and Smith, 1981; Chapter 10). 
Once a candidate equation has been derived, there are 
a variety of criteria or test statistics available to test 
for residual goodness-of-fit. Among these is the 
Q-statistic of Ljung and Box (1978); the test criterion 
used here is distributed as chi-squared, and significant 
values indicate an inadequate model. 

Q-statistics can be computed for any lag, and it is 
normal practice to examine a sequence of values, 
calculated at equidistant ascending lags. 

Methods 
The tree-ring time-series used here were developed 
from Nothofagus menziesii (silver beech) and N. 
solandri (mountain beech) trees in Fiordland, South 
Island, New Zealand. Trees were sampled using an 
increment borer at two sites [lower Takahe Valley 
(OBL, TKV) and upper Takahe Valley (UTV, TST)- 
see Norton (1983a, 1983b) for more details]. The ring- 
width patterns were crossdated (Fritts, 1976) between 
all ring-width series within each species and at each 
site, thus ensuring that the dating of individual growth 
rings was accurate. Ring-width was then measured to 
0.01 mm and where two cores were available from the 
same tree, averaged arithmetically to give tree time- 
series. Data from 19 silver beech and 17 mountain 
beech trees are used here. 

It became quickly apparent that the removal of 
long-term growth trends by either equation (1) or (2) 
would not be feasible. For a large majority of the 
trees, graphical plottings of annual radial growth 
against time revealed complicated and contrasting 
periods of suppression and release. Accordingly, each 
tree series was modelled by: 

 r = f(t) + R 

where in (7) 

 r = annual radial increment 

f(t) = a polynomial expression of time (t), 
 expressed in years 

 R = residual value 

To obtain the best available polynomial model for 
each dataset, the SAS statistical subroutine 
RSQUARE (SAS Institute, 1985; p. 711) was utilised. 
This program is superior to most step-wise regression 
methods, insofar as all combinations of predictor 
variables are evaluated, as opposed to the addition or 
deletion of a single variable. The R2 statistic is used as 
the criterion of best fit, which can be supported by 
the calculation of Mallows Cp statistic (Mallows, 1973) 
and its subsequent plotting against the number of 
predictors, to secure a measure of unbiased estimation 
(Daniels and Wood, 1971:p. 71). 

In addition, graphical plottings were obtained for 
each candidate model, depicting residual values 
against time, so to verify that no systematic patterns 
or grouping of data were present, symptomatic of an 
ill-fitting equation [Draper and Smith, 1981: Chapter 
4]. In general, the silver beech series were satisfactorily 
modelled with polynomials using permutations of 
power terms (in time) up to the sixth degree, but the 
mountain beech series (particularly TKV) proved more 
intractable, sometimes requiring powers up to the 
ninth degree to acquire an adequate fit. All series data 
were then transformed to ring-width indices by: 

 I=1+R/P 

where in (8) 

  

(8)

(7)

I  =  a ring-width index 

R =  residual value for a specific datum in a 
series, obtained from (7) 

P = the corresponding predicted value 

to give a scaled, homogeneous and stationary series 
for each growth-ring sequence (Fritts, 1976; p. 266). 

Box-Jenkins stochastic models of form (5) were 
then fitted to each tree index-series using the ARIMA 
procedure of the SAS/ETS statistical package (SAS 
Institute, 1984), a subroutine written expressly for the 
fitting of time-series equations. First, the likely order 
of  and  in (5) were identified by close inspection of 
the respective correlograms (produced by ARlMA). 
Second these parameters were confirmed or rejected if 
they failed to be significant at least at the 5% level 
(analogous to regression model building, t-statistics 
are available for the i , i  coefficients, testing the null 
hypotheses Ho : i = o or i = o). Third, entire 
models were discarded if autocorrelation checks of the 
residuals showed a majority to be significant at the 
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Table 1: Time-series analyses from Nothofagus menziesii data.    

Tree Length of series Parameter estimates Q-statistic level R2 value 
  and t-values at lag 12 and 24 for model 

 (years)     

Location 1      
1 314 0.80 (13.4) 0.41 (4.6) 0.86, 0.79 0.283 
2 279 0.73 (9.4) 0.31 (2.9) 0.51, 0.19 0.257 
3 265 0.79 (10.0) 0.49 (4.4) 0.73, 0.59 0.176 
4 220 0.87 (17.3) 0.46 (5.2) 0.33, 0.84 0.387 
5 200 0.81 (10.2) 0.48 (4.1) 0.30, 0.33 0.221 
6 228 0.82 (13.7) 0.39 (4.0) 0.14, 0.19 0.355 
7 190 0.82 (11.4) 0.46 (4.1) 0.14, 0.08* 0.273 
8 370 0.73 (10.1) 0.38 (3.8) 0.71, 0.82 0.209 
9 220 0.73 (8.5) 0.32 (2.7) 0.18, 0.28 0.252 

             10 208 0.56 (9.7) - 0.72, 0.84 0.307 
11 396 0.84 (17.3) 0.49 (6.6) 0.20, 0.19 0.269 
12 220 0.83 (12.4) 0.48 (4.6) 0.15, 0.06* 0.267 

Location 2      
1 170 0.71 (4.0) 0.52 (2.4) 0.41, 0.15 0.052 
2 130 0.26 (3.1) - 0.58, 0.23 0.057 
3 140 0.84 (11.8) 0.43 (3.6) 0.14, 0.19 0.357 
4 222 0.81 (11.3) 0.44 (4.1) 0.17, 0.61 0.253 
5 257 0.73 (7.8) 0.39 (3.2) 0.71, 0.57 0.278 
6 358 0.81 (17.6) 0.29 (3.9) 0.03, 0.09 0.431 
7 220 0.78 (10.7) 0.32 (3.0) 0.47, 0.87 0.316 

*contains a significant autocorrelation at lags 12-24, but this is considered spurious.  

5% level, as evaluated through the Q-statistic of
Ljung and Box (1978). [Both the t and Q statistics are 
calculated automatically by the subroutine]. 

Four ring-width index chronologies were then 
formed as follows: 
(a)   Silver beech data, from 1660-1979, at location 1 
 (cf OBL of Norton, 1983b); 
(b)   Silver beech data, from 1740-1979, at location 2 
 (cf UTV of Norton, 1983b); 
(c)   Mountain beech data from 1680-1979, at location 
 1 (cf TKV of Norton, 1983a); 
 (d)   Mountain beech data, from 1840-1979, at location 
 2 (cf TST of Norton, 1983a). 

Each index chronology was calculated by the 
arithmetic average of the respective tree time-series 
indices. The time constraints shown above were 
imposed to ensure that all periods of a specific 
chronology were represented by at least four trees. 
Box-Jenkins models were fitted to the four 
chronologies, the preferred fits to which were again 
provided by either ARMA(1,1) or AR(1) processes. 

The stability of the estimated first-order 
autocorrelation coefficients (r,) for the four 
chronologies was tested by computing l00-year 
running average values through equation (6). 

Results and discussion

The producton of valid growth-ring index 
chronologies from cores obtained from Nothofagus 
species growing in a closed canopy environment was 
not without some difficulty. The periods of 
suppression and release through competition cannot 
always be readily removed; careful use of polynomial 
time models as was assayed here, provides a partial 
answer, but it is not ideal. Least-squares estimation of 
the polynomial coefficients is well-known to exert an 
undesirable weight on extreme index-values (Fritts, 
1976; Warren, 1980), while there is always some risk 
that some competition effects are inadequately 
removed, or alternatively true climatic effects may be 
partially modelled out. 

The results of modelling the thirty-six tree index 
series by Box-Jenkins stochastic models are 
summarised in Tables 1 and 2. For brevity the 
Q-statistics are given at lags 12 and 24 [it is normal 
practice to calculate values at 5 or 6 intervals]. 

These results confirm that all the tree-ring series 
can be satisfactorily modelled by either ARMA(1,1) or 
AR(1) processes; higher order or alternative models do 
not enhance precision or give equivalent goodness-of- 
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Table 2: Time-series analyses from Nothofagus solandri data.    

Tree Length of series Parameter estimates Q-statistic level R2 value 
  and t-values at lag 12 and 24 for model 

 (years)     

Location 1      
1 170 0.48 (5.7) - 0.54, 0.59 0.153 
2 140 0.41 (5.2) - 0.53, 0.56 0.152 
3 230 0.83 (11.4) 0.50 (4.6) 0.56, 0.06* 0.220 
4 220 0.72 (7.8) 0.61 (2.5) 0.74, 0.05* 0.237 
5 220 0.53 (9.1) - 0.17, 0.16 0.270 
6 300 0.76 (11.9) 0.29 (3.1) 0.91, 0.53 0.328 
7 350 0.78 (12.0) 0.43 (4.3) 0.27, 0.19 0.545 
8 200 0.53 (8.8) - 0.88, 0.83 0.233 
9 300 0.60 (12.1) - 0.29, 0.66 0.354 

Location 2      
1 140 0.48 (6.3) - 0.49, 0.20 0.210 
2 140 0.54 (7.5) - 0.35, 0.34 0.284 
3 140 0.48 (6.5) -   0.08, 0.07* 0.223 
4 140 0.43 (5.5) - 0.03, 0.11 0.167 
5 140 0.29 (3.6) - 0.38, 0.14 0.073 
6 140 0.49 (6.5) - 0.23, 0.15 0.223 
7 140 0.61 (9.0) - 0.47, 0.62 0.362 
8 140 0.52 (7.2) - 0.26, 0.66 0.264 

*contains a significant autocorrelation at lags 12-24, but this is considered spurious.  

fit, and not one tree-series reduces to a white-noise
model. 

Zt = at 

 Overall, 58% of the series subscribed to an 
ARMA(l,l) process. These results can be compared to 
recent work by Rose (1983), Monserud (1986), and 
Biondi and Swetnam (1987) who examined large 
numbers of north-west and western American 
chronologies using similar methods. While the scope 
of these studies are far more extensive than attempted 
here, some including the modelling of chronologies (as 
opposed to individual trees) sometimes over 1000 years 
long, and embracing species from three genera (Pinus, 
Pseudotsuga, and Picea), comparison of results is 
quite revealing (Table 3). In all four studies, a 
majority of series have subscribed to an ARMA(1,1) 
process and have given virtually identical average 
parameter values. 

The summary statistics (Tables 1 and 2) confirm 
that the large majority of the tree-series are 
satisfactorily modelled by the processes shown. The R2 
values may seem very low by traditional regression 
application criteria but as emphasised by Monserud 
(1986), R2 reflects here the degree by which the series 
cannot be regarded as independent in time. Estimated 
values range from 0.05 to 0.43 suggesting that some

(9)

Table 3: Overall results of Rose (1983), Monserud (1986), 
Biondi and Swetnam (1987), and Woollons and Norton (this 
paper).     

Study % modelled by Av. parameter correlation
 ARMA(1,1) values  
 process a  (  and ) 
Rose 740,10 0.77 0.46 0.76 
Monserud 850,10 0.74 0.42 0.79 
Biondi and     
Swetnam 480,10     0.77 0.44 (not given)
Woollons     
and Norton 580,10     0.79 0.42 0.36 
series are quite heavily serially-correlated, despite the 
removal of age and competition effects. 

The four chronologies rationally separate into 
ARMA(1,1) or AR(1) processes, despite some presence 
of conflicting individual (tree) processes (Table 4). The 
averaging procedures result in some dilution in the 
degree of dependence, as shown by the overall R2 
values, but the analyses of the autocorrelation 
coefficients warn that the Box-Jenkins models must be 
regarded as overall trends. It may be that the 
chronologies modelled by Rose (1983) and Monserud 
(1986) also conceal more variable stochastic processes 
amongst the individual trees they are derived from. 
However, as our results show, the chronology model 
reflects the dominant model of its constituent trees. 
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Table 4: Results from analysing chronologies (a) to (d) by Box-Jenkins models. 
   
 

There is clear evidence that the autocorrelation
coefficients fluctuate with time (Table 5, Fig. 1), with 
periods when some chronologies are essentially 
independent. Recently, Briffa et al. (1987) have 
produced evidence that a chronology of Pinus 
sylvestris fluctuated in r, between -0.5 to 0.7 as 
opposed to an overall value of 0.39. However, the 
authors used 30-year running values to calculate r1, 
which may be an overly-harsh indictment of time- 
series modelling of tree chronologies, since no serious 
advocate of Box-Jenkins models would attempt such 
methods on so short time periods. Conversely, the 
results of Briffa et al. (1987) and those presented here 
confirm that ARMA(p,q) processes must be regarded 
as average phenomena, and there may well be periods 
in specific chronologies where a fitted time-series 
model does not reflect the true degree of dependence. 

Monserud (1986) suggested that an ARMA(1,1) 
process might be a universal stochastic model 
describing tree growth, but further commented that 
"such a conjecture will doubtless prove false". Our 
results certainly substantiate that there is a strong 
tendency for such an outcome, with predictably close 
parameter values. Monserud emphasised the need to 
study further trees growing in contrasting stand 
densities, pointing out that the majority of the 
American chronologies were constructed from open- 
grown, "sensitive" trees (sensu Fritts, 1976). In this, 
and other respects, the results presented here provide 

Table 5: Estimated lag-1 autocorrelation coefficients for each 
chronology based on 100-year running averages. 

Chronology   Mean      S.D.    Mode    Max      Min % of data 

within ±0.1

from mean

Silver     

beech (1) 0.29       ±.29      0.33 0.44 0.09 71

Silver     

beech (2) 0.27       ±.16      0.12 0.53 0.04 32

Mountain     

beech (1) 0.49       ±0.11    0.52 0.64 0.26 61

Mountain     

beech (2) 0.40       ±0.0l     0.41 0.42 0.38 100

useful adjunct information, since the sampled trees in 
the present study represent totally different genera, are 
angiosperms as opposed to gymnosperms, reside on a 
different continent, and grow in a strictly closed 
canopy situation. 

Further perusal of Tables 1 and 2 may suggest 
that the division of AR(1) and ARMA(1,1) models is a 
function of species; 89% of the N. menziesii conform 
to an ARMA(1,1) process, while 76% of the N. 
solandri prefer an AR(1) model. Unfortunately, the 
situation is totally confounded; the silver beech ring- 
series are considerably longer than the mountain beech 
[average lengths are 242 and 178 years, respectively]. 
Further analyses show that 81 % of series longer than 
200 years subscribe to an ARMA(1,1) process, but 
78% of shorter series are adequately depicted by an 
AR(1) model. On the premise that fewer observations 
are likely to be modelled by a simpler stochastic 
process, (by virtue of less precision associated with 
parameters), division caused by length of series is a 
more salient interpretation. Monserud (1986) preferred 
an AR(1) model for only three of 33 chronologies 

Figure 1: Running-average lag-1 autocorrelations for the four 
average ring-width index chronologies. 
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studied, but where chosen the lengths of the former
were 199, 255, and 196 years [overall average, 739 
years]. Furthermore, Biondi and Swetnam (1987) 
found 3 chronologies out of 23 to be best fitted by an 
AR(l) model, and here the series lengths were 194, 
125, and 214, so the trend is clearly established. 

Conclusions 
Combining results obtained here with the American 
studies suggest two general conclusions. First, there is 
undoubtedly a strong preference for tree genera to be 
modelled by an ARMA(1,1) stochastic process, 
irrespective of canopy state. Nevertheless, the length 
of the radial series has an influence on the applicable 
Box-Jenkins model, so searching for "best" equations 
in all situations, may not be justified or necessary, 
particularly as the processes are in fact mathematically 
related [Box and Jenkins (1976)]. 

Conversely, irrespective of the methods used to 
eliminate long-term fluctuations, use of Box-Jenkins 
equations highlight that serial correlations remain in 
growth-ring series, but can be largely removed by such 
methods. Thus, not only does data become more 
tractable for use with environmental variables, but 
chronologies exhibit better cross-correlation and 
sensitivity (Biondi and Swetnam, 1986). Processing 
tree-ring chronologies by time-series equations is 
therefore recommended; if time does not allow the 
deduction of an optimal model, then the assumption 
of either an ARMA(1,1) or AR(l) process, dependent 
on the series length, will probably suffice. 
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