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Graeme Wake is a New Zealander by birth and completed his Ph.D. in applied mathematics at Victoria University 
of Wellington in 1967. After a postdoctoral year at the University of Oxford, Professor Wake was successively a 
Lecturer, Senior Lecturer and then Reader in Mathematics at Victoria University. In 1986 he moved to Massey 
University in Palmerston North to take up a new chair of mathematics. Currently he is Head of the Mathematics 
Department which is one of four Departments in Massey's School of Mathematical and Information Sciences. 
Professor Wake's early work was in the field of mathematical chemistry, especially the study of the reaction-
diffusion equations which describe heat and mass transfer in physical, chemical and biological systems. He has, 
since coming to Massey University, developed intensive interests in biological systems as well as chemical 
processes. His publications number over eighty refereed publications in these areas and he has spent extensive 
periods in England. Also he is Director of an Industrial Mathematics Group at Massey University which acts as a 
focal point for academic-industry links for problem-solving partnerships. 

THE SYMBIOSIS OF MATHEMATICS AND BIOLOGY

Setting the Scene 
When I was at college, biology was set as an alternative 
to mathematics. Was this Hobson's choice? Not really: it 
was a reflection that biology, or at least elementary 
biology education, was largely non-quantitative. Have 
things changed? Well yes, but it will take a generation to 
have an effect. This will be hindered further by the lack 
of progress that mathematics has made in being accepted 
as the vehicle for mechanistic modelling, simulation and 
prediction in non-mathematical situations in biology and 
elsewhere. My schoolboy experience of biology was that 
of an eighteenth century taxonomist, and no one told me 
otherwise. 

I do know better now. Mathematics can be a great 
asset in modelling biological phenomena. The whole area 
of dynamical systems (differential-difference equations - 
tools from core curriculae in algebra and calculus, see 
later) provides a really good mind-set for biologists of all 
kinds - ecologists, plant physiologists, agronomists etc. 
My own time at Massey University has provided a 
wealth of challenges in areas like: 

Determination of food-chain dynamics in sea- 
 water, 

Explanation of distributions of cells in plant roots 
 and bacteria cohorts, 

Determination of optimal grazing strategies for 
 farming, 

Maximising wool growth,

Explanation of spatial patterns ("patchiness") in the 
occurrence of animal diseases like tuberculosis 
in possums. 

The success of mathematics in these areas and 
others like genetics. plant development and so on needs 
to be recognised generally, and especially in the 
curriculum in secondary schools. 

It is one thing to describe biological phenomena but 
it is really much better to operate at a deeper level and be 
able to predict and explain as one might. given a real 
understanding of the mechanism involved. Data 
gathering without a theory and interpretation is really a 
very small step. 

The three main steps involved in the process of 
mathematical modelling are: 

FORMULATION 
SOLUTION 
INTERPRETATION.

Of course a poor or even incorrect formulation will lead 
to a bad explanation - "garbage-in, garbage-out" as they 
say. But the iterative process of going through these 
steps with better and better approximations to the 
mechanisms involved can and does lead to better 
understanding. The process of mathematical modelling 
is one which has much to offer biology as it now stands. 
Thus mathematicians need to get more into the 
biological action.
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We need to encourage the exchange of knowledge 
across this discipline barrier. This is especially so at 
University level. Many groups have made a tentative 
start in this area. An example of this has just occurred 
here at Massey University. We have designed a course 
on Biological Modelling for 1993, and thereafter, 
principally for majors in Biology. The course will 
 include sections on key areas like: 

Fitting data to models, 
Systems approach - population theory and 

harvesting, 
Evolutionary trees - a combinatorial approach, 
Theoretical biology - optimisation problems and 

 sequence analysis. 
The difficulty is the diversity of these areas, but 

this is the sort of methodology needed in biological 
problems. 

The disciplines meet in an example 
Recent developments in the analysis of continuous and 
discrete dynamical system models has shown that the 
complex phenomena shown by various biological 
systems can be explained by surprisingly simple 
models. Given the phenomena of catastrophe theory 
(with the concept of the "onset of gross parametric 
sensitivity") and chaos shown by quite simple 
dynamical systems, the mind set which came from 
physics: 

complex situations complex mathematics

is open to re-examination. The application of these 
ideas to biological problems has stimulated 
mathematicians to rethink our approach to these 
methodologies with really positive results. 

An example of this is the recent discovery of 
strange behaviour in the discrete (c.f. continuous) 

Fig. 1: Graph of N(t) versus t for various N0 

formulation of the familiar differential equation for 
logistic growth in population theory, where N is the 
population size (or biomass) 

dN 
   = N(a-bN), with initial value when we start 

dt the clock N(O) = N0 

with a, b constant, depending on the population, species  
or environment. Here a is the growth rate per capita,  
and b is an over-crowding parameter. Now dN/dt 
is just the rate of change of N with t (like speed is the  
rate of change of distance). This equation can be s 
hown to have the solution 

aNo 
bNo + (a-No)e-atN(t) =

after some involved mathematics (at last we're useful!) 
and which has N( ) = a/b as the preferred long-term 
value for all No > O. This is demonstrated in Fig. 1. 
When this equation is written in discrete form with t = 
1,2,3,4, ..., that is, we look at the population by 
generations, Nt satisfies the difference equation 

Nt+l = Nt(a+ 1 - bNt), again with initial 
condition Nt=o = No  
 

Here Nt represents the population at time t (compare 
N(t) above) and Nt+l is the population at one time 
interval later, say a year for humans or a day for insects. 
This is the discrete analogue of our logistic equation 
above. Now here we have to admit defeat! No one has 
succeeded in solving for a simple formula for N, like 
that above. There is scope for a Nobel prize here!! 

One might have expected that the differences in 
these two models would be only cosmetic. To some 
extent this is right - 

a 
N  =    b 

is still the preferred long-term 
solution for small a. 
 

But if a is large enough, strange things happen. 
Firstly let's change things a bit with a couple of 

simple transformations. We change the basic growth 
rate a and write A = a + 1. Then we scale Nt to be a 

related value, Xt, say

                                b
Xt  Nt or Xt =  a       Nt. 

 

Then the difference equation for Nt becomes 
(multiplying the difference equation by b/(a+1) and 
substituting Xt for Nt as above, and A for a+1) 

                                                              b 
Xt=O = Xo = A No (*) 
(that is, a function of Xt). 

Xt+l = AXt(1-Xt), 
 = F(Xt) 

So this is the rule that gives the population a time 
interval later, say 1993 from that in, say, 1992. 

Now we note that X must remain on the interval 
0 < X < I, otherwise the population will become 
extinct. Since y = F(X) obtains a maximum of A/4 at 
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Table 1: Period 2 solution for A = a+1 = 3.2 

t 
Xt 

0 
0.5 

4 
0.513

X2n+2 
0.513 

X2n+3 

0.799 
1 

0.8 
2 

0.512 
3 

0.800 
5 

0.799
10 

0.513
X2n X2n+1 

0.513     0.799 

X = 1/2 (it is an upside-down parabola) we need 

1 <A<4 

for practical biological situations; otherwise we do get 
Xt < 0 after a few generations. (Try it and see.) The 
equilibrium value of (*) is still, as in the continuous 
case (see Fig. 1), 

          A-1        a 
X =          = 
          B          a+1 

                                           a 
which is, of course, N = 
                                           b 

Also F´(X ) = 2-A, so we have stability of X  (given 
by -1 < F'(X ) < 1) for 

1 < A < 3 (0 < a < 2). 

What happens for 3 < A < 4? By looking at the 
relation of Xt+2 to Xt from (*) we find after some not 
too difficult algebra using (*) at t and t + 1 that the 
population two intervals later is

Xt+2 = A2Xt (l-Xt)(l-AXt(l-Xt)) 

This has "fixed points" (a period 2 solution where 
the population number repeats itself every two intervals  
— see below) which is a stable dynamic "equilibrium" 
when A is slightly greater than 3. The same things  
happen again and again as, for larger A (but still less  
than 4), period 4 solutions appear and are stable for  
some values of A etc., etc. Thus we have the period-
doubling phenomenon and the onset of chaos at the  
point of accumulation of period 2n cycles. This happens 
when A=3.5700. 

Beyond this point (for 3.57 < A < 4) there are an 
infinite number of fixed points with different periods,

and an infinite number of different periodic cycles. This 
is then the onset of chaos. 

The term "chaos" evokes an image of dynamical 
trajectories which are indistinguishable from some 
stochastic process. Simulations tend to confirm this.  
But the underlying fact is that for all values of A there is 
one unique cycle that is stable and that attracts 
essentially all initial points. 

The fact that such rich behaviour comes from a 
simple (discrete) dynamical system underlines one of  
my points: 

"Simple models can describe complex behaviour". 
A simple iteration (of hand calculator variety) for A = a 
+ 1 = 3.2 gives the solution in Table 1. This has a period 
2 cycle which is attracting, that is, the population  
prefers to settle down to the pattern on the right of the 
table, which shows a period 2 solution. This means the 
steady state X  = a/(a+1) = 2.2/3.2 = 0.69 is still  
there but never attainable as the system never prefers 
this state. 

What lesson do we learn from this? We have used 
two different methodologies to describe the "same" 
situation. It could be disturbing to have different 
outcomes for the same situation. But periodic situations 
occur all over the biological landscape. 

If a population shows periodic behaviour the lesson 
learnt is that this could be modelled by a simple 
(discretised - the Nt one) equation. This was startling to 
mathematicians when this was first revealed. But the 
long term situation is good. Biologists and 
mathematicians do not need complicated dynamics to 
describe complicated outcomes like periodic solutions. 

By this kind of partnership development; matching 
reality with simple models, understanding will follow. 
This is the way ahead.


