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PROBABLE LIMIT OF ERROR OF THE POINT

DiSTANCE-NEIGHBOUR DI STANCE ESTIMATE

OF DENSITY
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SUMMARY: A formula is proposed for calculating the probable limit of error (PLE) of the density
estimate which is obtained from measurements of distance from sample points to the nearest member,
its nearest neighbour, and its nearest ncighbour.
It takes the form:

PLE ~ tAD/vN,

(where t is Student's t, A is a measure of non-randomness, D is the estimate of density, and N is the
number of sample points) and is considered to be analogous to the usual bounded plot sampling error
formula tS/vN for the specific case where density averages one per plct. Using Student's t for the
95 percent level of probability, 90 percent of the density estimates, drawn from 40 computer-simulated
populations were within the ranges given by the proposed formula. Similarly. 92 percent of 36 estimates
obtained from 11 paper-dot populations and 76 percent of 93 estimates obtained from 25 natural
populations were within the proposed PLE. In some of the remaining cases, the extent by which the
proposed PLE's were less than the calculated difference between true density and D were quite trivial.
Some anomalies probably arose from sampling difficulties.

INTRODUCTION

In an earlier paper (Batcheler, 1973) formulae are
given for calculating population density from distances
measured up to a chosen maximum distance R, or
without any limit (in which case R is infinity), from each
of N sample points (Fig, 1), Defining the nearest member
to the point as Ip, its nearest neighbour as In' and In's
nearest neighbour (exclusive of Ip) as 1m, the distances
measured are as follows:-

rp, if Ip is R or less away from the sample point, the
distance from the point to Ip(rp) is measured, rj)2 is the
square of rp, and p is the number of these measurements;
rn, ifrp is Ror less, the distance from Ip to In is measured

provided it is also R or less, and n is the number of these
measurements;
rm, if rn is R or less, the distance from In to Im(rm) is

measured provided it is also R or less, and m is the number
of these measurements.

These data are used to calculate the fol1owing

statistics:-

f~, pIN ... (I)

d ~ p!["( J:rp2+ (N - p)RZ)] . . . (2)

1

Al = \/{p:Erp2 - (~rp)2]n2NjLrpLrnP3 ... (3)

E(CY)

I

A2 = \/[pI:rp2 - (I:rp)2]m2NjI:rpLrmP2n

E(CY)

. . . (4)

in which Al and A2 are two indices of non-randomness, and
E(CV) is the expected coefficient of variation of rp
(Batcheler, 1973, Table 2, or from loge E(CV) = -1.0319

+ 0.4892f2 - 0.7182[4 + 0.6095(6).

a ~ (I + 2.473[) . . . (5)
b~(I +2.717f) . ..(6)

D ~
2~
(bAI + bA2) . . . (7)

where D is the required estimate of density.*

It was also shown in the 1973 paper that the geometric
mean of Al and A2(Ag) is a linear function of the stand-
ard deviation (8) of an estimate derived from bounded
pJots. Using plots which were large enough to include
an averagc of four members, the relationship was
CVplots = 50Aa-' Subsequently, I have found that At
and Az and hence Ag and the arithmetic mean (A) are
very similar, except when populations are extremely

*This formula for the estimate of D was incorrectly given as
a

diD = - (b-At + b-A2) in Batcheler (1973). An Erratum

2
note appears elsewhere in this issue.



BATCHELER: ERROR LIMITS OF DISTANCE ESTIMATES 29

aggregated. Therefore the simpler A will be considered
throughout this paper as the measure of standard devia-
tion.

FIGURE I. Diagram of sampling schemes when no limit R

is imposed (line A), and when a limit is imposed (line B).
For line B the four possible events at apoint are illustrated:

(a) nearest member beyond R-no distances measured;
(b) rp :::;; R, therefore measured; (c) rp and rll :::;; R, there-
fore measured; (d) rp' r/1and r mall measured:::;; R. In A,
N = p = n = m = 4, in B, N = 4, p = 3, n = 2 and
m= 1.

Despite the obvious linear relationship between Sand
A, I did not realise until recently that this relationship
might otTer a simple way of calculating a probable limit
of error of D, Since the corrected point distance tech-
nique (CPD) intrinsically bases the density estimate on
the distance to the nearest member (and uses the rnand
rm data to correct bias), the sample obtained is analo-
gous to bounded plots of unit size. Where bounded
plots of unit size are sampled, S2/X = t under Poisson
assumptions, and S will also equal l. Similarly, in CPO
sampling, A has been found to nearly equall (actually
0.948) when the population is random so that D is I and
unbiased. Therefore, since D is unit density, AD/yN
can be considered as an empirical analogue of the
standard error for a sample of plots, and at a specified
level, the probable limit of its error (PLE) will be
approximately

PLE ~ tAD/v'N

where t is "Student's" t.

Empirical testing of this hypothesis is the subject of
this paper,

TEST DATA

The data include the results drawn from analyses of
40 computer-simulated populations, II paper-dot
populations, and 25 field experiments described in the
earlier paper (Batcheler, 1973) in connection with
developing and tcsting formulae for calculating D. The
only feature of them which warrants repetition here is to
emphasise the consequences of estimating "true
density" as a bench-mark for evaluating the accuracy of
D and its PLE. Even in the case of the simulated popula-
tions, estimates of the density parameter (:::i: probable
sampJing error) were unavoidable because, particularly
in strongly aggregated populations, distance sampling is
severely distorted when sample points fall closer to the
edge of the population map than to the nearest popula-
tion member or its neighbours. "True densities" were
therefore estimat~d by counting in plots located inside a
line approximately half-way between the edges and the
nearest members,
Similar but minor problems arose in estimating "true

density" of some paper dot populations. In the case of
the natural populations, most "true densities" were
subject to an estimate of sampling error because it was
not feasible to count the total population, Typically,
these errors were less than::!:] 0 percent in uniform
populations such as pine plantations, and ranged up to

::!:42 percent for estimates of aggregated animal faecal
pellets (Batcheler, 1973 pp. 140-141).

RESULTS

Simulated populations.

The results of tests where limits are not imposed on
the distance searched from sample points (R) or from
one neighbour to another are shown in Figure 2. They
illustrate the main features of the pattern found through-
out this study.
Referring first to the confidence limits (P = 0.95) of

the plot estimates (thick vertical bars, Fig. 2), it is clear
that the probablc limit of error of "true density" ranged
from ::!:5 to 10 percent for the relatively uniform-

random populations (left side) up to :f:20 to 25 percent
for the more severely aggregated populations (right side).
Similarly, the proposed PLE's broaden significantly
across the spectrum from uniform (A < 1) to severely
aggregated (A > 3) populations.
Among the 15 samples which were uniform (A = 0.4-

0.6), or tended from uniform towards randomness
(A = 0.95) the PLE's of 14 encompass "true density",
Of 19 samples which ranged from slightly aggregated to

severely aggregated (A ranging from 1 to 3) 18 PLEs'
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FIGURE 2. The patternfor 40 simulated populations without limit on R, of the proposed PLE (vertical thin bars) plotted on
the deviation of D from "true density" (ordinate) and the index of non-randomness (A~ abscissa), The probable limits of
"true density" are indicated by the shorter, thick bars. Generally, D is less accurate, and PLE is wider, as the index of
aggregation increases,

encompass "true density". Beyond this, in extremely
aggregated populations (A > 3) four PLE's encompass
"true density", but two did not. Over all 40 populations,
90 percent of the PLE's overlapped with "true density".

Paper-dot and natural populations.

The results of 129 estimates of PLE for truncated and
unrestricted measurements are given in Figure 3. Trun-
cation of the measurements was achieved by listing the

rp (and associated rn and rm) in order from smallest to
largest, cutting them into blocks at progressively larger
R and accumulating the sums up to the maximum
measured. Samples were rejected if the imposition of a
small R resulted in exclusion of all the nearest neighbour
measurements (i.e. n, or more frequently m, were zero),
because in these situations estimates of Al and A2cannot
be made.
The left section of Figure 3 is comprised of 38 values

calculated for frequencies (formula I) less than 0.5; the
centre section gives 55 results corresponding to frequen-

cies between 0.5 and 0,99; the right section gives the 36
estimates with no R limit imposed upon measurementS.
Those for paper-dot populations are shown as open
circles and those for natural populations are solid dots
and crosses (see below).
Ninety-two percent of the density estimates for the

paper-dot populations were within :J:PLE (eight of 10 at
f < 0.5, 15 of 15 at f ~0.5-{).99, and 10 of 11 at f ~ 1.0).
However, in the natural population samples, only 76
percent of 93 estimates were within the range of PLE.
Successful prediction of these errors declined from 87
percent (of 28 estimates) when f < 0,5, to 75 percent (of
40 estimates) with fbetween 0.5 and 0,99, and to 72 per-
cent at f= 1.0.

The excessive proportion of failures of PLE to em-
brace "true density" of the natural populations was
largely attributable to the results from three estimates of
hare (Lepus europaeus) faecal pellet density, and one
small experiment in beech (Nothofagus) forest. These are
indicated in Figure 3 by crosses. The problem with the
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FIGURE 3. PLE's and differences between "true density" and D of the paper-dot and natural populations, grouped in three

ranges off. Points outside the wedge bounded by the diagonal lines are those where the differences between D and" true
density" exceeds PLE. Open circles refer to paper-dot populations. Dots denote the natural field populations, except those
of hare faecal pellets and one beech forest which gave unacceptable results (see text).

hare pellet experiments arose because A2 was not esti-
mated, and this is now known to invariably generate
unacceptably low estimates at large f in populations in
which clumps are distributed within clumps (Fig, 3)
see also comments p. 145, Batcheler, 1973). In the beech
forest experiment, the total population consisted of only
261 trees. Many measurements were made from succes-
sive sample points to the same trees and their neigh-
bours, This gives poor estimates of d and A. Deleting
these four sets of data leaves 84 per cent of the remaining
PLE's overlapping with "true density",

DISCUSSION

The proposed formula failed to give estimates which
embraced the differences between D and "true density"
in 17 per cent of the tests rather than the five percent
implicit in the use of Student's t for the 95 percent level
of probability.
Experimental problems were probably the major

cause of this discrepancy. The populations were severely
restricted in size, which must influence the normal distri-
bution theory of sampling infinitely large populations.
"True density", the value against which D and PLE are
evaluated, cannot be determined exactly because of edge
effects and sampling errors. Third, D and PLE must be
presumed to contain some element of error or bias
arising from the nature of the data used in the develop-

ment of estimating formulae.
Obviously, the tests with data from the simulated

populations are prone to all these errors, and suspect as
circular evidence because they are tests against the same
information from which the estimating formulae are
derived.

Nevertheless, the results from the simulated popula-
tions adequately show the general behaviour of the pro-
posed formula. When R is not limited, the PLE range
indicated for uniform populations is less than:!:: 10 per-
cent, and failed to encompass the "true density", by a
trivial percentage, in only a few cases (Fig. 2). Sub-
stantial anomalies arose only in extremely aggregated
populations.

Similarly, too many estimates were outside the
expected range in the calculations for the paper-dot and
natural populations to meet the implied 95 percent
specification, but the discrepancy is minor, Ninety-two
percent of the errors of the paper-dot populations were
within the proposed PLE. Seventy~six percent of natural
population estimates or, deleting those from the three
hare pellet and the one beech forest experiments, 84 per-
cent of PLE's enclosed "true density". These results
seem quite reasonable, particularly when taken in
conjunction with the probable errors implicit in the
"true density" values.

It is therefore concluded that PLE is a realistic esti-
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PLE for random
N Index of non-randomness (A) population from

.5 .75 1.0 1.5 2.0 2.5 3.0 x2
--
10 .36 .54 .72 1.07 1.43 1.79 2.15 -.52 +.71
20 .23 .35 .47 .70 .94 1.17 1.40 -.39 +.48
40 .16 .24 .32 .48 .64 .80 .96 -.29 +.33
80 .11 .17 .22 .33 .45 .56 .67 -.21 +.23
120 .09 .14 .18 .27 .36 .45 .54 -.17 +.18
200 .07 .10 .14 .21 .28 .25 .42 00.14
300 .06 .08 .11 .17 .23 .28 .35 00.11
400 .05 .07 .10 .15 .20 .25 .29 00.10
500 .04 .07 .09 .13 .18 .22 .26 00.09
1000 .03 .05 .06 .09 .12 .15 .19 00.06
2000 .02 .03 .04 .07 .09 .11 .13 00.04
- -------- -----
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mate of the probable error of density of populations,
provided estimates of total aggregation (Aj and Az) are
made, and provided few samples (say, 5 percent) are
comprised of repeated distance measurements to the
same members and their sequential neighbours,
Assuming this, a general table of PLE for different N

and A can be given to indicate the behaviour of the
formula when no limit (R) is imposed on distances
(Table 1). Errors will be rather larger when imposition
of a small R results in few measurements being made,
The table indicates that PLE less than:::!:::1Opercent of D
requires 100 to 400 samples as dispersion tends from
uniform towards random, and rises to 1,000 or more as A
tends towards extreme values which have already been
encountered in natural populations such as clumped
Celmisia and rabbit faecal pellets,

TABLE 1. Table for fAi V Nior selected values of Nand .4, and

for the error of random population samples calculated from
distribution of Z2(P = 0.95). The values under A = 1 are for
(nearly) random populaTiom. Compare wiTh those from X2
(right column).

Though such numbers appear daunting, they compare

favourably with the necessary magnitude of plot
sampling in extremely aggregated populations. The

formula N = S2t2/(specified error)2 indicates that in the
Celmisia population mentioned, variance of the counts
in the tOO 3,3 012 plots was such that if the result is
applied to sampling an infinitely large population, 840
plots would be necessary to estimate the mean within

:::!::: 10 percent at 95 percent probability, For counting
rabbit pellets, the data from the two experiments listed
in Batcheler (1973) indicate that approximately 430 plots
of 0.09 m2 would have been necessary to obtain the
above-mentioned precision,
The proposed formula gives very similar estimates of

variance and probable error of random populations to
those suggested by other authors for shortest distance
sampling. Morisita (1957) has shown that variance =
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density2/(N - 2) from which it follows that, because

density per sample unit is invariably 1, S/yN -='-2 is the
standard error and tS/yN--=-2 is the corresponding
limit of probable error. Therefore, since A is very nearly
I in the CPD method, tAD/y'N is very nearly the same
expression as given by Morisita if N is large (say, >50).
Skellam (1952), Thompson (1956) and Kendal and

Moran (1963) have shown that rp is distributed as X2,
and for random populations Kendal and Moran give the
formula for the upper (u) and lower (I) limits of D at
given probability as

Du or I = Z22Ndeg. freedom/2;r :Er2,

or

= z22NctrD/2N (remembering that for given
probability Z2 is onewtailed).

Estimates of PLE given by this method are almost
identical with those given by the proposed formula, even
for N as small as 60 (Table I, last column), Evidently,
the proposed formula is effectively the same as those
derived from formal treatment of random populations,
and it has the important advantage of giving an estimate
of probable error for non-random populations at about
the probability implied by choice of t.
Finally, it is worth emphasising that, as discussed

briefly in Batcheler (1973, p. 145), use of large R (or
absence of any limit on R) often leads to a problem of
dealing with a few very large "tailwend" distances in the
distribution of r p and its joint neighbours, particularly
if the population is severely aggregated. This can have
profound effects upon D, the severity of which can be
objectively determined by ranking the r p (and joint
neighbours) from smallest to largest, and calculating D
and PLE for conveniently chosen steps of (increasing) R,
In most cases, PLEfD steadily diminishes as R increases
-as wil1 be intuitively expected-so precision is im
proved by incorporating the larger measurements. But in
samples from extremely aggregated populations, AI and
A2 often increase rapidly as f exceeds about 0.8, and the
quotient PLEfD becomes less precise (see rabbit pellet
example, Figure 7, Batcheler, 1973). In these cases itsis
consistently found that the most precise estimate (i.e.
minimum PLE/D) is also the most accurate. This unw
doubtedly reflects some basic properties of the joint
distance technique which lead me in an earlier paper
(Batcheler, /971) to suppose that the smallest 50 percent
of the measurerr!ents would yield the best estimate. It is
probably also related to the situation in bounded plot
sampling where S2/X increases rapidly when plot size
exceeds the area occupied by the average clump in a
population (Greig-Smith, 1964). Further study of these
attributes will probably throw better light on the theory

of sampling non-random populations by distances.
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In para. 2 p. 139 it is stated that the average of two estimates of density, derived from

Dl = djab-At,

and

D2 = djab-A2,

consistently gave the most accurate estimate for the population. This average is given as

(1 + 2.473f)

(07I5) ~ «1 + 2.717f)-At + (1 + 2.717f)-A2).
2

However, this formula (which also appears on p. 140) should be

d
D ~ «(1 + 2.717f)At + (1 + 2.7l7f)A2)

2(1 + 2.473f)

or

d
D ~ - (bAt + bA2).

2a

Also, on p. 141, errors were made in converting densities of hare and rabbit pellets from
Imperial to metric measure.

The two estimates in (25-26) should be

239 T 103/m2 and 301 ct 129/m2.

Those listed in (27-29) should be

85 T 12, 66 T 47 and 113 T 311m2.


