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___________________________________________________________________________________________________________________________________

Abstract: Bone-seed, Chrysanthemoides monilifera ssp. monilifera (L.), is an environmental weed of coastal 
vegetation communities scattered throughout New Zealand. To assess the long-term implications for native forest 
regeneration in sites where bone-seed is present, we selected four study sites around Wellington, New Zealand, where 
bone-seed was abundant. We compared seed bank composition in bone-seed-invaded sites with nearby native forest 
patches, and monitored bone-seed and native seedling recruitment with and without control of mature bone-seed 
plants. We also tested the potential effects of fire on bone-seed recruitment in these communities by heating seeds 
prior to germination. Bone-seed, gorse (Ulex europaeus), and native species emerged from seed bank samples taken 
from bone-seed-invaded sites, but only native species and (less) gorse emerged from seed bank samples taken from 
native forest patches. Gorse germination was strongly promoted by heat but bone-seed germination was less affected 
by heat. Bone-seed seedling abundance increased dramatically following canopy removal, whereas native seedling 
abundance decreased dramatically. This suggests that disturbance of any form is likely to favour recruitment of bone-
seed (and gorse) over native species, although in the long term, native seedlings can establish beneath the canopy of 
mature bone-seed plants. It is not yet known if, in the absence of further disturbance, regenerating native vegetation 
will eventually replace bone-seed in New Zealand.___________________________________________________________________________________________________________________________________
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Introduction
Bone-seed, Chrysanthemoides monilifera ssp. monilifera 
(L.) T. Norl. (Asteraceae)1 , is an environmental weed found 
in scattered coastal locations throughout New Zealand. It is 
an erect shrub 1–3 m high that originates from the southern 
coast and adjacent mountains of South Africa. It was first 
recorded in New Zealand (Auckland) in 1870 (Webb et 
al. 1988), most likely introduced as an ornamental plant. 
Since then, it has spread throughout New Zealand from 
Northland to Otago, establishing along coastlines and in 
forest and woodland communities up to 20 km inland 
(Department of Conservation 2007). It tolerates a wide 
range of soil types, moisture levels, disturbance levels, 
and light environments (Weiss et al. 1988). Seeds are 
dispersed by gravity and birds, and possibly also possums 
and cattle (Weiss et al. 1988; Williams et al. 2000; Parsons 
& Cuthbertson 2001). Bone-seed is also considered an 
environmental weed in Australia, occurring in a range 

of vegetation types including coastal dune scrub, coastal 
woodlands, heathland, riparian vegetation, mallee scrub, 
dry and wet sclerophyll forest (Blood 2001). Another 
subspecies, Chrysanthemoides monilifera ssp. rotundata 
(bitou bush), is also highly invasive, and detrimental 
to native plants and animals in Australia (Parsons & 
Cuthbertson 2001; Gosper 2004), but, to our knowledge, 
does not occur in New Zealand. 

In New Zealand, bone-seed is subject to control 
by the Department of Conservation in eight out of 13 
conservancies, and is included in 12 out of 16 regional 
council pest management strategies. In 2001, bone-seed 
was declared an unwanted organism under Sections 52 and 
53 of the Biosecurity Act 1993, which means it is illegal 
to propagate, sell, or distribute it in New Zealand.

Despite being widely considered a serious 
environmental weed in New Zealand, there is little 
empirical evidence on which to judge the potential long-
term impacts of bone-seed. Studies in Australia have 

___________________________________________________________________________________________________________________________________
1 Nomenclature follows Webb et al. (1988).
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shown that bone-seed can invade intact native vegetation, 
displace native species, and reduce biodiversity (Dodkin 
& Gilmore 1985; Weiss et al. 1988; Thomas et al. 2000). 
Anecdotally, bone-seed may also have a detrimental effect 
on faunal carrying capacities in Australia, by reducing 
nectar resources, seed, pollen, and foliage of native plant 
species (Weiss et al. 1988). Bitou bush is more widely 
studied, and has been shown to displace and possibly 
reduce seed production, germination, and seedling growth 
of the Australian native coastal wattle, Acacia sophorae 
(Weiss & Noble 1984a,b; Vranjic et al. 2000). Bitou 
bush may also reduce the abundance and diversity of 
plant-feeding birds (French & Zubovic 1997) and litter 
invertebrates (French & Eardley 1997; Lindsay & French 
2006; Wilkie et al. 2007), displace important food sources 
for migratory birds (Parsons & Cuthbertson 2001), and 
alter rates of litter decomposition and nutrient cycling 
(Lindsay & French 2004). In New Zealand, bone-seed 
may have some, or all, of the effects that bone-seed and 
bitou bush have in Australia.

The potential impact of weed invasions may be 
lessened if the invaded site has native seed propagules 
present, either at the site, or within dispersal distance 
(Bakker et al. 1996; Turner & Corlett 1996; Chazdon 
2003). In this situation, providing that seed dispersal 
vectors are present, native seeds will be continually 
arriving at the invaded site, with the potential to germinate 
and establish and compete with the weeds. However, 
whether natives or exotics establish depends on a range of 
interacting factors, including seed viability, germination 
requirements, environmental conditions, and competitive 
relationships with other species present (Watt 1947; Levine 
2001; Seabloom et al. 2003). Seed viability, longevity, 
and dormancy characteristics vary among woody native 
species in New Zealand, but in general most species have 
seeds that germinate soon after ripening, and relatively 
few have seeds that remain viable in the soil for more 
than one year (Burrows 1994; Sem & Enright 1996). 
Data on the seed viability of bone-seed in New Zealand 
are lacking, but in Australia bone-seed seeds are thought 
to retain ‘high viability’ in the soil for at least 4 or 5 years 
(Parsons & Cuthbertson 2001). However, other studies 
have shown that only 6–13% of seeds remain viable after 
3 years (Weiss 1984), and that deeply buried seeds can 
remain viable for more than 10 years (Adair & Ainsworth 
2000). In its native range, bone-seed has a relatively low-
density seed bank (estimates include 3–85 seeds m–2 and 
100–300 seeds m–2), and produces few seedlings (Scott 
1996; Thomas et al. 2000). However, in Australia, plants 
can produce ten times more seed than they do in South 
Africa (Scott 1996), and seed bank densities of 2500 seeds 
m–2 and seedling densities of 200 seeds m–2 have been 
reported (Lane 1976 in Thomas et al. 2000).

Native species recruitment at bone-seed-invaded 
sites may also be influenced by another, frequently co-
dominant, invasive species, gorse Ulex europaeus (L.) 

(Fabaceae). Gorse is a spiny shrub up to 4 m tall, and is 
the most widespread weed in New Zealand (Department 
of Conservation 2007). Gorse seed viability is high in 
New Zealand: 80–100% in one study where seeds were 
extracted from the soil (Zabkiewicz & Gaskin 1978), 
and more than 99% in another study where seeds had 
been stored in the laboratory for up to 10 years (Hill et 
al. 2001). Gorse seed is thought to remain viable in the 
soil for several decades at least (Moss 1959; Partridge 
1989; Hill et al. 2001), and can build up to densities of  
10 000 seeds m–2 (Ivens 1978). Not surprisingly, very high 
densities of gorse seedlings have also been recorded in 
New Zealand following disturbance (up to 350 seedlings 
m–2 in one study) (Ivens 1978).

Human-induced disturbance often facilitates invasion 
by exotic species (Hobbs 1991; Hobbs & Huenneke 1992; 
D’Antonio et al. 1999), particularly when there are few 
early-successional species in the native flora, as is the case 
in New Zealand (Healy 1961; Wardle 1991; Craine et al. 
2006). However, providing no further disturbance occurs, 
their presence is frequently ephemeral, and is eventually 
replaced by native regeneration (Allan 1936; D’Antonio 
et al. 1999; Kotanen 2004). In New Zealand, for example, 
gorse is eventually overtopped by native species (Lee et 
al. 1986; Wilson 1994), and is widely considered to be 
a useful shelter crop that facilitates native regeneration. 
Recent research, however, adds a cautionary note to 
this assertion; the composition of forest that regenerates 
through gorse is not necessarily the same as the composition 
of forest that regenerates through native species (Sullivan 
et al. 2007). It is not known whether native succession 
through bone-seed proceeds in a similar way to that through 
gorse. Weed control can result in significant disturbance 
if the methods employed involve canopy removal or 
displacement of soil. Conversely, weed control can also 
reduce both above- and below-ground competition, and 
(as is frequently the intention of such control measures) 
can facilitate native seedling recruitment (Masters et al. 
1996; Sweeney et al. 2002; Baer & Groninger 2004).

Fire is another form of disturbance that may play an 
important role in bone-seed recruitment and competition 
with natives and other exotic species. Fire promotes seed 
germination in some species, usually because heat breaks 
physical dormancy imposed by the seed coat (Baskin 
& Baskin 1998; Fenner & Thompson 2005). However, 
other fire-related cues can also promote germination, 
e.g. smoke, charcoal and nitrate (Keeley et al. 1985; 
Bell et al. 1999; Kenny 2000; Enright & Kintrup 2001). 
Exactly what combination of temperature and duration 
of exposure optimises germination can vary between 
species (e.g. Auld & O’Connell 1991; Herranz et al. 
1999), so fires of different intensity and durations can 
affect competitive relationships, and thus result in different 
regeneration patterns. Bone-seed plants can be killed 
by even low intensity fires (Weiss 1984), but bone-seed 
germination and seedling establishment is promoted by 
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fire (Weiss 1984; Adair & Ainsworth 2000). Similarly, 
gorse germination is promoted by fire (Zabkiewicz & 
Gaskin 1978). In New Zealand, very few native plants 
display specific adaptations to fire (Basher et al. 1990; 
Ogden et al. 1998), so fire can have devastating effects 
on the native vegetation. Furthermore, fire often provides 
conditions favourable for the establishment of exotic 
weeds (Milberg & Lamont 1995; Harrod & Reichard 
2001; Lesica & Martin 2003). In New Zealand it is often 
gorse that dominates a site following fire, but bone-seed 
can sometimes be the dominant species following fire, 
despite the likely presence of gorse in the seed bank 
(KGM & SMT pers. obs.).

To assess the long-term implications for native 
forest regeneration in sites where bone-seed is present, 
we conducted a series of experiments designed to answer 
the following questions: (a) what is the composition of the 
seed bank in bone-seed-invaded sites and nearby native 
forest patches, (b) what are the patterns of bone-seed and 
native seedling recruitment in bone-seed-invaded sites, 
with and without canopy disturbance, and (c) what is the 
potential effect of fire on bone-seed recruitment in these 
communities?

Materials and methods
Study sites
In October 2001 we identified four coastal sites in the 
Wellington Region where mature bone-seed was abundant 
within a mixed community of native and exotic shrub, 
tree, grass, and herb species. All sites were within 200 m 
of a patch of secondary forest (disturbed in the past, but 
now dominated by regenerating native forest). In New 
Zealand, these secondary forest patches typically contain 
a mix of ferns, perennial herbs, shrubs, and broadleaved 
and podocarp trees (Wardle 1991). Sites 1 and 2 were on 
the west-facing slopes of the rolling hills above the suburb 
of Seaview, approximately 250 m apart (Site 1, 41°14´ S 
174°55´ E; Site 2, 41°14´ S 174°54´ E). Site 3 was on the 
north-facing slopes of similar hill country in the suburb 
of Happy Valley (41°19´ S 174°45´ E). Site 4 was on the 
north-facing coastal scree slopes of Pukerua Bay, 35 km 
north of Wellington (41°02´ S 174°51´ E). Underlying 
soils at all sites were either yellow-grey or yellow-brown 
earths (NZ Soil Bureau 1968). Mean annual rainfall in 
Wellington is 1249 mm and mean annual temperature 
is 12.8°C (National Institute of Water and Atmospheric 
Research 2007).

Regeneration following bone-seed control
In October 2001 we subjectively selected 10 discrete, 
mature bone-seed plants at each of the four bone-seed-
invaded study sites, giving a total of 40 plants. Selected 
plants were a minimum of 5 m apart. To prepare the sites, 
we cut these bone-seed plants off at ground level and 

marked out a 1-m2 plot centred on the bone-seed stump. 
We also removed all gorse plants from the plots by cutting 
them off at ground level. To examine the effect of bone-
seed control on bone-seed and native regeneration, we 
counted all native and exotic seedlings in these 40 plots 
at the time of canopy removal in October 2001, then 
again in February 2002. Part-way through the experiment 
(December 2001) plots were divided in half in order to 
add another treatment: weeding. One half was randomly 
allocated the weeding treatment, and was hand-cleared of 
exotic grasses, bracken fern (Pteridium esculentum), and 
resprouting gorse. The other half was left uncleared.

To further assess the potential for native seedling 
recruitment under bone-seed, in February 2002 we noted 
whether native seedlings (up to 100 cm tall) were present 
beneath 25 mature bone-seed plants scattered throughout 
study sites 2, 3, and 4, and beneath an additional 10 
mature bone-seed plants at Raumati Beach, on the west 
coast 50 km north of Wellington (40°56´ S 174°58´ E). 
The vegetation at Raumati Beach was similar to that of 
our other four study sites: mature bone-seed abundant 
within a mixed community of native and exotic shrub, 
tree, grass, and herb species.

Germination from the seed bank
To examine seed bank composition at bone-seed sites and 
nearby native forest patches, we extracted 320 soil cores 
(each 51 mm in diameter and 51 mm deep) in November 
2001. Half of the soil cores were taken from the four 
bone-seed-invaded study sites, and half were taken from 
the nearby native forest patches. At the bone-seed-invaded 
sites, one core was taken from each corner of each 1-m2 
plot where a mature bone-seed plant had been removed 
(see regeneration experiment above) (40 plots × 4 cores 
= 160 cores). In each of the four nearby native forest 
patches, one core was taken from each corner of 10 1-m2 
plots randomly located within each patch (4 native patches 
× 10 plots × 4 cores = 160 cores). Site 4 was different to 
the other sites, because it was dominated by low-growing 
native vegetation, with mature bone-seed plants scattered 
throughout. Accordingly, the ‘native’ cores were taken 
from 10 subjectively selected 1-m2 plots located directly 
beneath native vegetation, a minimum of 20 m from any 
bone-seed plant.

The four cores from each plot were mixed, sieved 
through 10-mm2 mesh to remove large stones and roots, 
and spread out to a depth of 1–5 mm on a 20-mm layer of 
peat moss in a perforated plastic tray (320 mm × 265 mm 
× 60 mm). In order to detect any seed contamination from 
either the surrounding area or the peat moss, five control 
trays containing sterilised soil and five containing peat 
moss were included in this study. No bone-seed, gorse, or 
native seedlings germinated from these trays. Trays were 
randomly distributed in the outdoor area of the Wellington 
City Council plant nursery where they were exposed to 
natural conditions and kept moist with frequent watering. 
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Bone-seed, gorse, and native seedlings were counted and 
removed monthly from December 2001 to May 2002, by 
which time germination had ceased.

Germination following exposure to heat
To examine the germination response of bone-seed and 
gorse to the heat of fire, we exposed seeds to a range 
of treatments in a domestic oven, comprising various 
combinations of temperatures (°C) and duration of 
exposure: 60°, 80°, 100°, and 120° for 0.5, 1, 5, and 10 
min, 140° and 160° for 0.5, 1, and 5 min, and 180° for 
0.5 and 1 min. At the higher temperatures, we exposed 
seeds to only the shorter durations because we assumed 
that seeds would not survive the highest temperatures 
for long durations. Fruits were collected in June 2002, 
after which the bone-seed putaminas (seeds contained 
within the hard, shell-like seed covering, or ‘bones’) were 
cleaned of fruit flesh, and the gorse seeds were extracted 
from pods. Bone-seed putaminas and gorse seeds were 
then stored dry until July 2002 when we conducted the 
heating experiment. Three replicates per species were 
heated separately for each treatment: 3 × 40 seeds for 
bone-seed and 3 × 30 seeds for gorse. Fewer gorse seeds 
were available for collection because it was early in the 
season for gorse seed development (Moss 1959), but 
also because a large proportion of seeds on each plant 
had been damaged by seed-feeding invertebrates. Bone-
seed putaminas are c. 6–7 mm in diameter (Parsons & 
Cuthbertson 2001), whereas gorse seeds are c. 3 mm 
long (Weiss 1986). Before each replicate was heated, 
we checked the oven temperature using a CHY k-type 
thermometer (CHY Firemate Co., Taiwan) with a 500-
mm stainless-steel-encased temperature probe attached 
(PCWI Precision Instrumentation, Australia). Following 
heating, each replicate of seeds was spread out on sterile 
soil in a perforated aluminium tray (90 mm in diameter and 
25 mm high). Trays were randomly distributed within a 
shaded glasshouse, and kept moist with frequent watering. 
Germinated seeds were counted and removed weekly for 14 
weeks, at which point germination appeared to have ceased. 
During the course of the experiment, the average weekly 
maximum temperature in the glasshouse was 32.9°C and 
average weekly minimum temperature was 11.7°C.

Analysis
To examine the effect of weeding on bone-seed and 
native seedling regeneration after bone-seed clearance, 
we used a Poisson generalised linear model with final 
number of seedlings as response variable, and site and 
weeding treatment as predictors. Bone-seed and native 
data were analysed separately. There were no significant 
interactions, so all were removed from the model, using 
a stepwise process.

To test whether germination from the seed bank 
differed between native and bone-seed-invaded sites, we 
applied a permutation test of bone-seed invasion status 

for the eight averages of site × bone-seed invasion. The 
data exhibited strong non-normality with big differences 
between sites, and this made it difficult to find valid models 
using seedling count data at within-site level. Results for 
the permutation tests are presented on a two-sided basis, 
without any assumption that seeds of bone-seed and gorse 
would be more numerous in soil cores taken from bone-
seed-invaded sites, or that seeds of native species would 
be more numerous in soil cores taken from native sites.

To examine the effect of heat on seed germination 
of bone-seed and gorse, we used three-way ANOVA with 
arcsin-transformed percent germination as response 
variable, and species, temperature, and duration as 
predictors. Interactions between all three variables were 
examined, and the model was simplified using an F-test 
to successively remove non-significant factors in higher 
order interactions. Species, temperature and duration were 
all treated as categories. A loess local smoother (Cleveland 
& Devlin 1988) was added to scatter plots to highlight 
the trends shown by the data.

Statistical analyses were performed using R statistical 
software (R Development Core Team 2007).

Results
Regeneration following bone-seed control
In general, removing mature bone-seed plants had a 
positive effect on bone-seed regeneration, and a negative 
effect on native regeneration (Fig. 1). There were no bone-
seed seedlings present in any of the 40 plots at time of 
initial canopy clearance in October 2001, but by February 
2002 there were 64 bone-seed seedlings present (1.6 ± 
0.4 per plot; mean ± SE; data summed across weeding 
treatments). Conversely, the total number of native 
seedlings declined from 83 (2.1 ± 0.5 per plot) in October 
2001 to 10 (0.3 ± 0.1 per plot) in February 2002. Gorse 
seedlings were not counted in this experiment because 
seedlings were mostly indistinguishable from resprouts 
at two of the sites where gorse was most abundant. Such 
gorse seedlings or resprouts were numerous by February 
2002 in these sites, and likely outnumbered seedlings of 
all other species combined.

Weeding had no significant effect on the final number 
of seedlings recorded for either bone-seed (P = 0.53) or 
native species (P = 0.52). There was no difference among 
sites for the number of native seedlings (P = 0.62), but there 
was for bone-seed seedlings (P < 0.001), probably due to 
the comparatively high number of bone-seed seedlings 
present at Site 4 by February 2002 (Fig. 1).

Seventy percent of the 35 additional mature bone-
seed plants we surveyed had native seedlings present 
beneath the canopy.

Germination from the seed bank
Very few bone-seed seedlings emerged from soil cores 
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Figure 1. Change in number of 
bone-seed and native seedlings 
following control of mature bone-
seed plants. Each bar  represents 
the average (± SE) change in the 
number of seedlings in the 10 
plots at each site.

taken from bone-seed-invaded sites (0.15 ± 0.07 per plot; 
mean ± SE), and none emerged from soil cores taken from 
native sites (Fig. 2). There was no significant difference 
between native and bone-seed-invaded sites for bone-seed 
seedlings (P = 0.43). Many more gorse seedlings emerged 
from soil cores taken from bone-seed-invaded sites (9.9 ± 
1.72 per plot) than from native sites (0.03 ± 0.03 per plot) 
(Fig. 2) but this difference was not significant (P = 0.14). 
Many more native seedlings emerged from soil cores taken 
from native sites (3.33 ± 1.40 per plot) than from bone-
seed-invaded sites (0.13 ± 0.06 per plot) (Fig. 2) but this 
difference was also not significant (P = 0.09). The lack of 
statistical significance is likely due to the large variation 
in the number of seedlings among the four sites.

Germination following exposure to heat
Germination of gorse increased dramatically as both 
temperature and duration increased, but may have been 
starting to decline at the maximum duration of exposure 
(10 min) (Fig. 3). Germination of bone-seed was much 
less variable across the range of temperatures and 
durations of exposure (Fig. 3). Gorse germination reached 
an observed maximum of 60% after exposure to 140˚C 
for 5 min, whereas bone-seed germination reached an 
observed maximum of 22.5% after exposure to 100˚C 
for 0.5 min.

The ANOVA confirmed that percent germination 
differed significantly between species, with different 
effects of temperature and duration between species (Table 
1). However, there was no evidence of interaction between 
temperature and duration.

Discussion
Disturbance can promote weed invasion, largely because 
it can increase the amount of bare ground available for 
seedling recruitment (Grime 1979; Crawley 1987), reduce 
competition from native plants (Noble 1989; Jesson et 
al. 2000), alter resource availability (Wilson & Tilman 
1993; Burke & Grime 1996), and/or facilitate weed seed 
dispersal or germination (Hobbs 1991; Parendes & Jones 
2000). In our study, the disturbance created by removing 
mature bone-seed plants resulted in a dramatic increase 
in seedling numbers of both bone-seed and gorse, and a 
dramatic decrease in seedling numbers of native species 
(Fig. 1). Similarly, Thomas et al. (2000) demonstrated 
that increasing soil disturbance during removal of bone-
seed in Australia was detrimental to the establishment of 
many native species. These results suggest that minimising 
both canopy and soil disturbance when controlling bone-
seed and gorse in New Zealand, e.g. by leaving dead 
plants standing, may improve subsequent rates of native 
species regeneration. On the other hand, in the absence 
of disturbance (including bone-seed control), there does 
appear to be good potential for native regeneration beneath 
mature bone-seed. However, whether this means that 
bone-seed will eventually be replaced by native succession 
remains to be seen.

Fire is another type of disturbance that has been 
demonstrated to promote germination of both bone-seed 
(Weiss 1984) and gorse (Zabkiewicz & Gaskin 1978). 
In Australia, bone-seed seedling emergence has been 
shown to be up to 150 times higher in burnt compared 
with unburnt areas (Lane & Shaw 1978). In our study, 
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Figure 3. Germination of gorse 
(top panels) and bone-seed (bottom 
panels) seeds following exposure to 
heat. Each data point represents the 
percentage germination of 30 (gorse) 
or 40 (bone-seed) seeds. Seeds were 
exposed to various combinations of 
temperature (60°, 80°, 100°, 120°, 
140°, 160°, 180°C) and duration (0.5, 
1, 5, 10 min). Note: 160°C was the 
maximum temperature used for the 
5-min-duration trial, and 120°C the 
maximum temperature for the 10-min 
trial. Data points are jittered to allow 
overlaid points to be seen, and a loess 
local smoother line added to highlight 
the trends in the data. 

Figure 2. Germination of bone-seed, 
gorse, and native seeds from seed 
bank samples taken from native forest 
(top panels) and bone-seed-invaded 
sites (bottom panels). Each data point 
represents the number of seeds that 
germinated from four combined soil 
cores, taken from each corner of one 
plot. Data points are jittered to allow 
overlaid points to be seen.
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Table 1. ANOVA summary table of the effect of species, temperature, and duration (predictors) on percent germination (response 
variables, arcsin-transformed), showing degrees of freedom (d.f.), sum of squares (SS), variance ratios (F), and P values. 
Species, temperature and duration were all treated as categorical variables.
___________________________________________________________________________________________________________________________________

Predictors	 d.f.	 SS	 F	 P
___________________________________________________________________________________________________________________________________

Species	 1	 0.67205	 32.5854	 <0.001
Temperature	 6	 0.07010	 0.5665	 0.756
Duration	 3	 0.33648	 5.4383	 0.002
Species × temperature	 6	 0.48202	 3.8952	 0.001
Species × duration	 3	 0.40123	 6.4847	 <0.001
Residuals	 124	 2.55741
___________________________________________________________________________________________________________________________________

however, germination of bone-seed was largely unaffected 
by exposure to heat, showing similar rates of germination 
across the range of temperatures we tested from 60°C to 
180°C. It may be that heat alone is insufficient to promote 
a strong increase in germination, and that smoke is a key 
fire effect stimulating bone-seed germination, as has 
been found for other hard-seeded plant species (Morris 
2000; Enright & Kintrup 2001). The chemical in smoke 
responsible for stimulating germination has been isolated 
(Flematti et al. 2004), and ‘smoke-water’, rather than heat, 
is often used to stimulate the germination of desired fire-
responsive species for restoration (e.g. Tieu et al. 1999; 
Coates 2003).

By contrast, gorse germination was strongly promoted 
by heat; the highest rates of germination were from seeds 
exposed to 140°C for 5 min. Gorse germination appeared 
to decline only after exposure to 120°C for 10 min. Our 
results are similar to another study in which 84% of gorse 
seeds germinated after exposure to 100°C for 10 min, 
but only 4% germinated after exposure to 150°C for 10 
min (Zabkiewicz & Gaskin 1978). Temperatures at the 
soil surface vary greatly during a wildfire, depending on 
meteorological conditions, fuel characteristics and local 
topography (Cheney 1981). In a study of three New 
Zealand fires, temperatures at the soil surface ranged from 
100°C to 1000°C (Payton & Pearce 2001). Temperatures 
below the soil surface are likely to be significantly lower 
because of the insulating properties of soil (Bradstock & 
Auld 1995; Ferrandis et al. 1999). In the study of New 
Zealand fires (Payton & Pearce 2001), temperatures 2.5 cm 
below the soil surface never exceeded 69°C. Thus, seeds 
on the soil surface are more likely to be destroyed by fire 
than are buried seeds. Since small, persistent seeds are 
more likely to be deeply buried than large, less persistent 
seeds (Thompson et al. 1993; Bekker et al. 1998), it is 
likely that a lesser proportion of the gorse seed bank will 
be destroyed by fire compared with the seed bank of 
bone-seed. Where there are high numbers of gorse seeds 
present in the soil, any disturbance – and fire, in particular 
– is likely to result in a gorse-dominated site for several 
decades to come (Lee et al. 1986).

Soil seed banks can play a crucial role in determining 

the composition of plant communities following 
disturbance (Skoglund 1992; Ferrandis et al. 1996; 
Pakeman & Small 2005). Prior knowledge of the species 
present in the seed bank can help managers predict the risk 
of post-disturbance weed invasion, and thus identify sites 
that may require management following such an event. We 
did not detect any bone-seed seedlings, and only very few 
gorse seedlings, in the seed bank samples taken from native 
forest patches. However, these results do not necessarily 
indicate that bone-seed is absent, and gorse uncommon, 
in the seed bank at these sites; they may just as well be 
attributed to a lack of power in our sampling design. This 
is a fundamental problem with measuring dispersal at a 
distance from the source, particularly when the events 
are relatively rare (Cain et al. 2000). Such seeds, at the 
‘tail-end’ of the dispersal curve, occur at low densities, 
and so are extremely difficult to detect and require huge 
sampling effort (Dessaint et al. 1996; Nathan & Muller-
Landau 2000). We also detected very few bone-seed 
seedlings in the seed bank at bone-seed-invaded sites, even 
though we sampled directly below the canopy of mature 
bone-seed plants where numerous bone-seed seeds were 
present; this also suggests that our sampling power was 
too low. Nevertheless, even if seed dispersal events occur 
only rarely, they can still play a major role in the invasion 
process by initiating new ‘satellite’ populations (Moody 
& Mack 1988; Kot et al. 1996; Clark et al. 1998).

In summary, while all forms of disturbance are 
likely to favour bone-seed and gorse recruitment over 
native species, it appears that there is good potential for 
native species to establish beneath the canopy of mature 
bone-seed. If bone-seed plants are removed in order to 
restore native vegetation, control methods that minimise 
disturbance are likely to be more favourable for native 
seedling recruitment. Follow-up control of bone-seed (and 
gorse, if present) seedlings is also likely to assist native 
seedling recruitment, and the addition of native seed may 
also be necessary if natural seed sources are absent. It is 
not yet known whether native regeneration (in the absence 
of disturbance) can eventually replace bone-seed in the 
same way that it can replace gorse.
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