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Abstract: A common question that arises when considering the results from a well-designed sampling programme 
for a rare or invasive species is: ‘Sampling has failed to detect a species that could have been present, so can we 
calculate the probability that it truly was absent during the sampling period?’ Noting that this invokes a Bayesian 

present a method of addressing it.
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Introduction

Policy developers commonly express the need to be informed 
about a measure of probability that an invasive species was 
actually absent in some domain during a sampling period, 
given that sampling has failed to detect it (e.g. Didymosphenia 
geminata in the North Island of New Zealand; Biosecurity 
New Zealand 2009). In probability theory this is a Bayesian 
question in that it seeks to make a probability statement about 
a hypothetical state-of-nature given the data obtained.

Methods

Without loss of generality we keep matters simple by 
assuming that: (1) sampling methods have perfect sensitivity 

sampling is random within the space-time domain of interest 
(i.e. in those parts of the domain where conditions could allow 
for the species' presence). The perfect sensitivity assumption 
can be relaxed, as discussed later.

The essence of Bayesian methods in this context can be 
stated as using new data to update an investigator's prior belief 
about the species' absence once new data come to hand. That 
updating uses Bayes’ Rule, and the result takes the form of a 
‘posterior probability’. While the validity of the Rule is well 
accepted, its outcome in the context of hypothesis assessment 
is less so—posterior probabilities depend to some extent 
on the investigator's prior belief and so may vary between 
investigators. Nevertheless we suggest that if one uses a 
standard or ‘reference’ prior (Lee 1997), progress can be 

with the number of sample data, such that the data ‘begin to 
speak for themselves’.

We propose the use of the Bayesian Credible Interval Value 
(CIV), which permits an inference statement of the form ‘The 
probability is X that the species is present at less than p* of 
all possible sites in the sampled domain, given that sampling 
in that domain has failed to detect it’. In this statement the 
value X is the calculated CIV, and the value p* is a value that 

must be decided externally (e.g. by a committee of managers 
and scientist). The value of p* needs to be ‘small’ (e.g. 0.01), 
but it cannot be zero (absolute guarantees of absence cannot 
be inferred).

Mathematical details of the derivation of CIV formulae 
are given in the Appendix. The key issue is the appropriate 
choice of the two parameters (  and ) of the beta prior 
distribution.

Results and Discussion
On choosing p* = 0.01 we obtain the results shown on Fig. 1, in 
which two well-known alternative choices of a ‘reference’ beta 
prior distribution are shown: uniform (  =  = 1) and Jeffreys' 
(  =  = ½). So for 100 samples all showing absence, under the 

is present at less than 1% of all possible sites in the sampled 
domain, given that sampling in that domain has failed to detect 

least 458 sampled sites (for the uniform prior) and 330 sites 
(for Jeffreys’ prior). So which prior should be used?

The former prior is invoked by ‘Bayes’ postulate’ (Lee 
1997), which is often proposed for situations of ‘complete 
ignorance’. However, for two reasons, we propose that Jeffreys' 
prior be preferred: (1) because it has desirable ‘invariance 
under scale transformation’ properties that the uniform prior 
does not share (Lee 1997), and (2) because few would agree 
with the notion that, under a uniform prior, prior to any new 
data being obtained an investigator would hold that any value 
of prevalence and would be equally likely. Note however 
that Jeffreys’ prior is ‘cup-shaped’, such that very low or 
very high prevalence values are held to be much more likely 
than more moderate values. But as site data come to hand, 

of the prior is quickly quenched. This seems a very desirable 
feature. It has been used to justify the choice of Jeffreys’ prior 

environmental waters and for drinking waters (McBride & 
Ellis 2001; McBride 2005). Any choice of a prior other than 
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uniform or Jeffreys' (e.g. a ‘hockey-stick’ beta distribution, 
with  >> ) may invite the very arbitrariness that can cause 
discomfort with Bayesian methods, although we note that 
in some circumstances a ‘weakly informative prior’ may be 
desirable (Gelman 2006).

Finally, the CIV
imperfect sensitivity of the sampling method, in that it may 
occasionally fail to detect the species when present in a 
sample. That is the assumption of perfect sensitivity can be 
relaxed. Denoting that probability as q (q < 1) the CIV can be 
approximately obtained by dividing p* by q.

In proposing this approach it must be noted that the 
assumption of an adequate sample design must always be 
checked. The results of a CIV will be misleading were that 
programme to contain avoidable bias.
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Appendix: Mathematical development of the CIV

sampled n sites to make an assessment regarding a species' 
possible presence and failing to detect it:
A: the species was actually absent from the domain in which 
the sampled sites lie, and
F: failure to detect the species at any sampled site.

In Bayesian theory, on commencement of a study an 
investigator holds a ‘prior probability’ of the truth of a 
hypothesis (such as ‘the species truly is absent from the 
domain’). After obtaining the study's data, Bayes’ Rule is 
used to update that probability, so obtaining the ‘posterior 
probability’. Under the Rule these probabilities are related, such 
that ‘posterior  prior x likelihood’, where the likelihood is a 
description of the data (e.g. Lee 1997; Bolstad 2004). In the 
present case it is appropriate to describe the prior probability by 
a probability density function for prevalence, using the versatile 
beta distribution Be( , ) with (positive) shape parameters  
and 
1], always encloses a unit area but can take a variety of shapes. 

½) is the cup-shaped ‘Jeffreys’ prior’, which is often taken 
as a ‘reference prior’ in Bayesian analyses (Lee 1997). We 
denote g(p) ~ Be( , ) as the prior probability density of the 
species' prevalence (p), and L(F | p) as the ‘likelihood’ for all 
samples showing absence of the species. The posterior density 
function (McBride 2005) is 

Standard sampling theory shows that L is a binomial 
function involving the term (1 – p)n, a term also shared by the 
beta density function. Consequently, the likelihood and prior 
functions are ‘conjugate’ and so we obtain the simple algebraic 
result that the posterior density function is given by h(p | F) = 
Be( , + n). We can now integrate this function over a range of 
p to get lower and upper bounds (enclosing a ‘credible interval’ 
for p) to obtain the CIV. Since this interval does not have to be 
symmetric, we have included the possibility of true absence 
by setting the lower limit of the credible interval as plower = 

X = p* as the upper limit, the desired 
A | F)] can be obtained as Pr(p  p* | failure 

to detect the species in n sites) = Ip*(  + n), where Ip* is the 
‘incomplete beta function ratio’ for 0  p*  1. Calculation 
of the incomplete beta function ratio results shown on Fig. 1 
used the regularised incomplete beta function in Mathematica 
(Wolfram 2007). Other readily available statistical packages 
can perform these calculations.

(1)

Figure 1. CIV (probability of absence, given failure to detect) 
versus sampling effort for prevalence limit p* = 0.01.


