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First coprolite evidence for the diet of Anomalopteryx didiformis, an extinct forest

ratite from New Zealand

Jamie R. Wood!", Janet M. Wilmshurst!, Trevor H. Worthy? and Alan Cooper”

"Landcare Research, PO Box 40, Lincoln, Canterbury 7640, New Zealand
2School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales,

Australia

3 Australian Centre for Ancient DNA, Darling Building, North Terrace Campus, University of Adelaide, South Australia 5005,

Australia

* Author for correspondence (Email: woodj@landcareresearch.co.nz)

Published on-line: 1 May 2012

Abstract: Evidence of diethas been reported for all genera of extinct New Zealand moa (Aves: Dinornithiformes),
using preserved gizzard content and coprolites, except the forest-dwelling Anomalopteryx. Skeletal features
of the little bush moa (Anomalopteryx didiformis) have led to competing suggestions that it may have either
browsed trees and shrubs or grubbed for fern rhizomes. Here, we analyse pollen assemblages from two coprolites,
identified by ancient DNA analysis as having been deposited by Anomalopteryx didiformis. The pollen results,
together with identified fragments of leaf cuticles from the coprolites, support the hypothesis that Anomalopteryx
didiformis browsed trees and shrubs in the forest understorey.
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Introduction

Thedietsof New Zealand’sextinctmoa (Aves: Dinornithiformes)
havelongbeen atopic for speculation (Haast 1872; Buick 1931).
Following early descriptive reports of plant material from
putative moa gizzard contents (Forbes 1892; Hamilton 1892),
empirical studies of gizzard content (Gregg 1972; Burrows et al.
1981; Wood et al. 2007) and coprolites (Horrocks et al. 2004;
Wood et al. 2008) have revealed aspects of the diets of South
Island giant moa (Dinornis robustus), eastern moa (Emeus
crassus), coastal moa (Euryapteryx curtus), heavy-footed moa
(Pachyornis elephantopus) and upland moa (Megalapteryx
didinus); sensu the nomenclature of Bunce et al. (2009) and
Gill et al. (2010). The studies have revealed that these moa
species were relatively generalist herbivores, consuming a wide
range of plant types from trees and shrubs to ground-cover
herbs. However, the little bush moa (Anomalopteryx didiformis)
remains a significant gap in the current understanding of moa
feeding ecology, as it is the sole moa genus for which no
empirical evidence of diet has been reported.

The little bush moa was a relatively short and gracile
moa species (adults 50-90 cm tall at the back, 26-64 kg).
The distribution of its fossil bones suggests Anomalopteryx
didiformis was restricted to lowland closed-canopy forest (Fig.
1) (Worthy 1990; Bunce et al. 2009). In contrast, all other
moa species except crested moa Pachyornis australis (which
was restricted to subalpine herbfields; Tennyson & Martinson
2006) occupied a broader range of habitats, with most ranging
from forest to shrubland, grassland and herbfields (Worthy
& Holdaway 2002). Anatomically derived hypotheses for
the feeding ecology of Anomalopteryx didiformis (based on
the relatively robust jaw with a secateur-like overlap of the
mandible and premaxilla, large temporal fossae (Fig. 1), and
large gizzard volume) have mostly agreed that the species
probably browsed forest understorey trees and had a fibre-rich

diet (Atkinson & Greenwood 1989; Worthy & Holdaway 2002;
Lee et al. 2010; Thorsen et al. 2011). Early in the history of
moa research, Richard Owen recognised adaptations in the
bone morphology of moa, including Dinornis parvus (now
Anomalopteryx didiformis), that he related to digging and
scratching, specifically suggesting that their foot structure was
sufficient for and probablyused for the digging up of nutritious
fern rhizomes (Owen 1883a,b). This view was also held later
by Kooyman (1991), who also suggested possible similarities
with the feeding habits of kiwi (Apteryx spp.). Here we report
the discovery of the first coprolites identified as being from
Anomalopteryx didiformis,and present analyses of their pollen
content to help to resolve the diet of this enigmatic species.

Materials and methods

The coprolites were recovered from a rock shelter on
Mt Nicholas Station, near the western shore of Lake Wakatipu,
South Island, New Zealand (45°06'16.7" S, 168°26'43.4" E;
c.400 mabovesealevel). The discovery of moa feathers, bones,
and the ‘excrement of a large bird’ in a cave at Mt Nicholas
was reported by White (1876). In February 2009, we re-located
this cave following the description and measurements of the
site given by White (1876) (Fig. 2). More than 100 years of
burrowing by rabbits (Oryctolagus cuniculus)had significantly
disrupted the stratigraphy at the site. Further exploration of
the area revealed several more caves of similar size at the
same elevation (c. 60 m above lake level). At the east end of
the conical hill in which the cave described by White (1876)
is located (Fig. 2), is an area of dry sandy ground sheltered
by a rock wall. We excavated a pit measuring 100 x 50 cm,
orientated perpendicular to, and extending out from, the wall,
and uncovered approximately 40 coprolites (Figs 2 and 3).
Identification of the depositor species was based on ancient
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Figure 1. (a) Holocene distribution of little bush moa (4nomalopteryx didiformis) based on fossil bone records (adapted from Worthy &
Holdaway (2002)); (b) lateral and dorsal views of 4. didiformis skull, showing large temporal fossa (Tft).

Figure 2. (a) Location of rock
shelterat Mt Nicholas Station on the
western shore of Lake Wakatipu,
South Island, New Zealand, in
relation to the cave described by
White (1876); (b) Eastern end of
rock shelter showing position of
excavation pit; (¢) Concentration
of several moa coprolites within
excavation pit (background
sediment darkened to highlight
coprolites).
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DNA analysis, performed at the Australian Centre for Ancient
DNA at the University of Adelaide. DNA was extracted from
each coprolite once following methods described by Wood et
al. (2008). We used three primer pairs to amplify diagnostic
sections of the moa control region (Fig. 4). First, we used
Moa 262fw (5 GCGAAGACTGACTAGAAGC 3’) and Moa
294rv (5 CGTACTGTTCAAATCTCGC 3°) to amplify 31
bp that can distinguish each moa species except Euryapteryx
curtus and Anomalopteryx didiformis. Second, to distinguish
these two species we designed the primers Andi/Eugr fw (5’
GCCATACGTTCATTAGTTATACACC 3’) and Andi/Eugr
rv (57 AGATATTAAGRCCCTCGGCGA 3°) to amplify a
diagnostic 22-bp fragment. Third, if the 31-bp fragment could
not be amplified using the primers Moa 262 fw and Moa 294rv,
we used Moa 204fw (5 AGATTTATARCTCGGACA 3’) and
Moa 294rv to amplify 11 bp that also allow discrimination of
eachmoaspecies except Euryapteryx curtus and Anomalopteryx
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didiformis. All these primer pairs are highly specific to moa,
and the primers 204fw, 262fw, and 294rv have previously
been used in ancient DNA studies on the group (e.g. Cooper
et al. 2001; Bunce et al. 2003; Wood et al. 2008; Rawlence
etal. 2009). Coprolite sequence identification was performed
using BLAST (Basic Local Alignment Search Tool; Altschul
etal. 1990) (100% identity), and by alignment with sequences
from moa specimens of known identity.

Subsamples of coprolites were processed for pollen
analysis by soaking in hot KOH for 10 min, treatment with HCI,
acetolysis, separation of inorganics by lithium polytungstate
flotation (at specific density 2.2), staining, and mounting on a
microscope slide. Spikes of exotic Lycopodium spore tablets
were used to allow quantification of pollen concentrations.
Counts of at least 280 pollen grains were made from each
coprolite. Fragments of leaf cuticle on the pollen slides were
identified using the cuticle photographic collection at the
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Figure 3. (a) Pollen assemblages from little bush moa (4dnomalopteryx didiformis) coprolites from rock shelter at Mt Nicholas Station,
South Island, New Zealand. Note * Asteraceae is tentatively assigned to Olearia, within subcanopy trees, but may also represent dicot
herbs; (b) Anomalopteryx didiformis coprolites (scale is 10 mm); (¢) Pit excavated in the floor of the rock shelter at Mt Nicholas Station,
showing stratigraphy and location of moa coprolites projected onto X-Y, X-Z, and Y-Z planes.
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Allan Herbarium, Landcare Research (Lincoln, New Zealand).

Results and discussion

Moa DNA was successfully amplified from four coprolites.
Two of the coprolites were identified as being from Dinornis
robustus and will not be discussed here. Coprolite A7493
was positively identified as being from Anomalopteryx
didiformis (Fig. 4). Coprolite A7491 was identified as being
from either Euryapteryx curtus or Anomalopteryx didiformis
(Fig. 4). Despite this uncertainty, we infer that it is likely to
be Anomalopteryx didiformis based on the close proximity
to A7493 in the excavation pit (Fig. 3), and the fact the site
was formerly forested (as discussed below) and therefore
had the preferred habitat of this moa species. In contrast,
Euryapteryx curtus preferred drier eastern regions (Tennyson
& Martinson 2006). Few other moa remains have been found
in the Mt Nicholas area, and the identities of most of those
that have are unverified (Worthy 1998). However, the former
presence of Megalapteryx didinus is indicated by green eggshell
attributable to this species (Gill 2006) collected by White
(1876) and most skeletal specimens from the Lake Wakatipu
area are M. didinus (e.g. Lydekker 1891; Oliver 1949). Fossil
bone assemblages described by Worthy (1998) from West
Wanaka Station, 60 km to the northwest of Mt Nicholas but
with a similar climatic and palacovegetation history, were
dominated by Megalapteryx didinus, Dinornis robustus, and
Anomalopteryx didiformis.

Plant macrofossils recovered from the sediment between
coprolites provide evidence of a forested environment while
the moa occupied the area, and include leaf fragments of
silver beech (Nothofagus menziesii) and bush lawyer (Rubus
schmidelioides), and seeds of matat (Prumnopitys taxifolia),
miro (P, ferruginea) and Coprosma spp. Avian bones and
feathers collected from the Mt Nicholas area by White (1876)
are also typical of species from a forest fauna, and include
parakeet (Cyanoramphus sp.), owlet-nightjar (4degotheles
novaezealandiae), robin (Petroica australis), and saddleback
(Philesturnus carunculatus) (Worthy 1998).

Radiocarbon dating of six coprolites (two Anomalopteryx
didiformis, one Dinornis robustus, three unidentified) show
the assemblage represents a short period of deposition in the
site ¢. 800-500 years prior to human settlement (95% CI
calibrated age range of 1521-1185 BP) (Table 1). The 95%
Cl calibrated age ranges for the two Anomalopteryx didiformis
coprolites overlap (Table 1), suggesting they could have been

deposited by the same individual bird; however, the coprolite
pollen assemblages differ (Fig. 3) indicating they were not
deposited during the same defecation event. The pollen
concentrations in the coprolites were high (800 000 grains g
inA7493 and 950000 grains g ' in A7491), possibly indicative
of deposition during spring or summer months. Both pollen
assemblages contain significant components from trees and
shrubs (87.9% in A7493 and 62.1% in A7491), including
podocarps, beech (Nothofagus), Myrsine, and Coprosma.
Herbs and ferns comprise relatively minor components of
the pollen assemblages but include plant taxa typical of those
that may grow around large rock outcrops within a forest (e.g.
Ranunculus, Myosotis, and Poaceae). The liane Muehlenbeckia
was an important component of the pollen assemblages from
the coprolites, and is known to have been consumed by other
moa species (Trotter 1970; Burrows et al. 1981; Wood et al.
2008). Fragments of leaf cuticle on the pollen slides were
predominantly Myrsine and podocarp (Fig. 5).

Attempts to amplify plant DNA from the coprolites using
the generic angiospermrbcL primershlaF and h2aR (Poinar et
al. 1998) were unsuccessful. This is possibly due to the larger
size of this amplicon (95 bp excluding primers) compared
with the successfully amplified moa DNA fragments (< 31
bp). An exponential decrease in DNA abundance relative to
fragment size is often observed in ancient samples (Adler
et al. 2011). However, in the absence of plant DNA, the
microfossils provide dietary information. While coprolite
pollen assemblages may include wind-blown pollen that do
not necessarily reflect actual diet (but have merely settled on
the leaves of other plant taxa), at least 2 of the important taxa
from the coprolites (Myrsine, Muehlenbeckia) are locally
dispersed and insect-pollinated (Moar et al. 2011), indicating
that these plants were likely to have been directly ingested.
The case for Anomalopteryx having browsed on Myrsine is
strengthened by the abundance of Myrsine leaf cuticle present
inthe samples. These are likely to be either Myrsine divaricata
(a small-leaved divaricating shrub) or M. australis. We found
no evidence for a subterranean or fern rhizome-rich diet as
suggested by Owen (1883a, b) and Kooyman (1991). No fern
tissues or rhizomatous fibres were observed in the coprolites.
Both these were noted in winter dung samples from South
Island takah& (Porphyrio hochstetteri), a species known to
feed on fern rhizomes during winter (Wilmshurst 2003). Ferns
spores were a minor component of the coprolite pollen/spore
assemblages (2.9% and 3.8% respectively) and would have
been expected to be in much higher concentrations had the
birds been foraging in forest soil beneath ferns (e.g. James &

Table 1. Radiocarbon dates and 95% Confidence Interval (CI) calibrated age for moa coprolites from rock shelter at Mt Nicho-

las Station, South Island, New Zealand.

Lab no. Identity Radiocarbon age Error ABC Calibrated age BP (95% CI)
Wk28323 Probably Anomalopteryx
didiformis (A7491) 1440 30 —28.9 1352-1265
Wk28324 Anomalopteryx didiformis
(A7493) 1527 30 -29.0 1410-1302
Wk28325 Unidentified moa 1415 30 -31.8 1338-1185
Wk28326 Unidentified moa 1538 30 -29.9 1484-1301
Wk28327 Unidentified moa 1478 30 -30.3 1377-1289
Wk28328 Dinornis robustus 1582 34 -27.6 1521-1343
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Burney 1997; Wilmshurst 2003).

Overall, our results are consistent with the currently
accepted inference that the diet of Anomalopteryx didiformis
consisted largely of fibrous material taken from trees and
shrubs in the forest understorey (Atkinson & Greenwood
1989; Worthy & Holdaway 2002; Tennyson & Martinson
2006). Interestingly, this feeding ecology appears to have
been partly shared with at least two other species of moa:
Megalapteryx didinus as reported by Horrocks et al. (2004),
which has a considerably more gracile skull and a far smaller
volume of gizzard stones (THW unpubl. data) even though
they were similar sized birds to Anomalopteryx; and Dinornis
robustus (Burrows et al. 1981). However, these species also
grazed herbs in non-forest vegetation communities (Horrocks
et al. 2004; Wood et al. 2008). The discovery and analysis of
further Anomalopteryx coprolites from other sites across New
Zealand will be necessary to understand the full dietary range
of this bird, the factors partitioning its niche from those of
other moa species, and its likely ecological role within New
Zealand’s prehuman forest communities.
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