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Abstract: Factors influencing detection probability in line transect distance sampling were investigated to estimate 
the abundance of four common farmland birds on 12 sheep & beef farms in the South Island of New Zealand. 
Our primary aim was to evaluate the necessity of employing distance methods to correct for heterogeneity 
in detection probability. Detections of skylark Alauda arvensis, blackbird Turdus merula, song thrush Turdus 
philomelos, and Australian magpie Gymnorhina tibicen were recorded using ten 500-m unbounded line transects 
on each of 9–10 visits, and modelled using multiple covariate distance sampling methods. Covariates of 
detectability played a strong role in model fitting, but showed few consistent directional trends within species. 
Increased woody vegetation cover on farms greatly decreased detectability, while few seasonal or geographical 
effects were found. No detectability differences were found between farms using certified organic, integrated 
management or conventional farming systems, indicating that bird population dynamics might be compared 
between systems using simpler index counts. However, unless detectability parameters can be standardised to 
a high degree within a survey, we recommend the use of analysis methods that incorporate heterogeneity in 
detection probability. 
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Introduction

Most bird monitoring in New Zealand has been done in protected 
areas, on native species of conventional conservation interest 
(e.g. O’Donnell 1996; Hooson & Jamieson 2003; Powlesland 
et al. 2003). More recently, environmental managers and 
researchers have emphasised a need to increase our knowledge 
of the composition and health of species assemblages in the 
‘forgotten 60%’ – the large part of New Zealand that is in 
agricultural or other production landscapes (Norton 1998; 
Perley et al. 2001; Moller et al. 2005; Macleod et al. 2008). 
Introduced species now dominate production landscapes and 
form an integral part of their ecological networks. Nevertheless 
many native species persist in the predominantly low lying 
and fertile agricultural landscapes – the very habitats where 
biodiversity might flourish most with appropriate land use and 
habitat protection (Blackwell et al. 2008; Meadows et al. 2008; 
Moller et al. 2008; Blackwell et al. 2011). Among potential 
indicators of agricultural ecosystem health, bird abundance 
and diversity stand out as likely candidates because birds are 
near the top of food chains, relatively easy to monitor, well 
recognised and familiar to consumers and farmers alike. 
The latter makes them potentially useful as flagship species 
to incentivise environmental care, especially if maintaining 

bird abundance is incorporated into market Quality Assurance 
programmes for securing market access and premium prices 
for farm produce (Moller et al. 2005; Coleman et al. 2009). 
Reliable and efficient survey methods are needed to determine 
the state and dynamics of bird populations. The overall aim 
of the present study was to explore the viability of distance 
sampling as a methodology for assessing populations of 
common birds on farmland. 

Several survey methods suitable for the monitoring of 
bird populations are available, and their appropriateness 
for different circumstances has been widely discussed (e.g. 
Buckland et al. 2000; Borchers et al. 2002; Thompson 2002; 
Johnson 2008). For the present survey, focus was placed on 
the type of methodology that aims to establish an estimate 
of detectability for use in the adjustment of raw counts into 
estimates of absolute abundance (Buckland et al. 2000; 
Morrison et al. 2001). Raw counts and similar related ‘relative 
indices’ are inexpensive and their relative simplicity can 
encourage participation of local stakeholders in monitoring, 
an important opportunity to build support for environmental 
care (Agrawal 2005). However, relative indices can only 
reliably indicate changes in bird abundance between habitats 
or places, or trends in abundance at the same habitats and 
places, if detectability remains about constant. This study 
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is part of the Agriculture Research Group On Sustainability 
(ARGOS) project that seeks to compare biodiversity between 
certified organic, integrated management or conventional 
farming (Moller et al. 2005). Relative indices, like raw bird 
counts or ‘five-minute bird counts’ (Dawson & Bull 1975), 
could only reliably compare bird abundance between these 
farming systems if detectability remained similar. This paper 
focuses on understanding variation in detectability to guide 
agricultural industry agents and policymakers on the most 
efficient way of monitoring birds to engender environmental 
care, but we expect the general issue of relative detectability to 
be important for all conservation agendas where bird abundance 
is compared across habitats and for long-term trend analysis.

Line transect distance sampling (Buckland et al. 2001, 
2004) was chosen to measure changes in detectability because: 
(1) it is relatively easy to implement in the field; (2) well-
proven computer software is available for analyses; (3) the 
central assumption of declining detectability with increasing 
distance from a transect holds well for relatively open farm 
landscapes; (4) the method has been intensively documented 
and tested (Norvell et al. 2003; Newson et al. 2005, 2008; 
Buckland 2006). By implementing suitable stratification, 
potential sources of imprecision can be reduced at the design 
stage (Buckland et al. 2001; Johnson 2008). Also a highly 
useful feature of modern distance analysis is the ability to 
introduce likely parameters into the analysis as covariates 
of detectability (Marques & Buckland 2003; Marques et al. 
2007). Knowledge of the covariates and parameters that affect 
detectability can help researchers at both planning and analysis 
stages to derive more reliable density estimates.

Our survey was limited to four common focal species in 
order to enhance precision of sightings and achieve higher 
efficiency and replication in the field. The species chosen for 
monitoring were skylark Alauda arvensis, blackbird Turdus 
merula, song thrush Turdus philomelos, and Australian magpie 
Gymnorhina tibicen. Of these, the former three are European 
introductions; magpies are self-introduced from Australia 
(Heather & Robertson 2000). These species are among the 
most common birds on sheep & beef farms in New Zealand, 
preferring open paddocks interspersed with vegetation blocks. 
They were chosen because of their ubiquity, the relative ease 
of identification in the field both visually and by call/song, 
and because previous surveys on the same farms have shown 
that density could be estimated with higher precision than was 
possible for other common species (MacLeod et al. 2012).

We determined the extent and causes of variation in 
detectability for the surveyed species, and whether distance 
sampling provided an effective means of adjustment. Temporal 
variability (time of day or year), habitat differences (vegetation 
type, weather conditions) and variability introduced by the 
mechanisms of field monitoring (observer identity and detection 
by sight or sound) have been found to influence detectability 
elsewhere (e.g. Sauer et al. 1994; Newson et al. 2005, 2008; 
Alldredge et al. 2007; MacLeod et al. 2012).

Methods

Study areas
This study focused on 12 of the 36 sheep & beef farms that are 
participating in the ARGOS project (www.argos.org.nz). Our 
study farms occur in four clusters of three farms each, located 
near Outram (Otago), Oamaru (Otago), Owaka (Southland) and 
on Banks Peninsula (Canterbury) (see MacLeod et al. (2012) 
for a location map). Each cluster contained one representative 
of each of three different farm management types (‘panels’): 
conventional (CON), integrated management (INT), and 
certified organic (ORG).

Data collection
There were 10 rounds of repeat visits (circuits) between 
November 2005 and August 2007 during which attempts were 
made to sample all farms (Table 1). Circuits were categorised 
into three seasons: ‘breeding’ (September–January), ‘post-
breeding’ (February–May) and ‘winter’ (June–August). On 
each farm visit, 10 randomly placed 500-m line transects were 
selected, with a minimum spacing of 200 m between transect 
lines. Monitoring using a laser range finder and a GPS unit 
was carried out following standard procedures for line transect 
distance sampling (Buckland et al. 2001). Two observers (the 
‘main observer’ and one of a changing roster of seven other 
observers) walked these transects in a North–South direction. 
Each observer usually performed five consecutive transects in 
a fieldwork day starting from c. 3.5 h after dawn. 

Distance sampling methodology
Distance sampling theory is presented in detail in Buckland 
et al. (2001, 2004). In distance sampling with line transects, 
observers record the distance from a randomly placed line to 
all birds detected within a truncation distance w. Not all the 
birds within distance w will be detected, but a fundamental 
assumption is that all birds at zero distance are detected or, 
failing that, the proportion of detections at zero distance is 
known. Overall detection probability is expected to decrease with 
increasing distance from the line or point. The distribution of the 
observed distances is used to estimate a ‘detection function’ g(y) 
that describes the probability of detecting a bird at distance y 
perpendicular to the centreline of the transect. Given that various 
basic assumptions hold, this function allows the estimation of 
the average probability P of detecting a bird given that is within 
width w of the line. Bird density can then be estimated as D = n/
(P*a), where n is the number of birds detected and a is the size 
of the region covered (the total length of the transect multiplied 
by 2w). In program Distance, the detection function is modelled 
by combining a robust key function with an optional flexible 
series expansion (Buckland et al. 2001). We also included 
covariates that might have influenced detection probability, 
such as habitat parameters, weather conditions and observer 
identity (Marques & Buckland 2003; Marques et al. 2007).

Table 1. Spacing of monitoring circuits over the survey period.
__________________________________________________________________________________________________________________________________________________________________

Year 2005  2006            2007
__________________________________________________________________________________________________________________________________________________________________

Month 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8
Circuit 1  2 3  4   5  6  7 8   9     10
Season BREED  BREED POST  POST   WINTER  BREED  BREED BREED   POST     WINTER
__________________________________________________________________________________________________________________________________________________________________
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Detectability estimation using distance sampling

Distance model building
All calculations for the estimation of detection functions were 
carried out in Distance 6.0 Release Beta 1 (Thomas et al. 
2010); additional computations were performed in GenStat 
Version 9.1 (Lawes Agricultural Trust 2006). Datasets were 
analysed per species and farm – 4 (species) × 12 (farms) sets 
of models, minus 3 sets where insufficient detections were 
available for a reliable density estimate – giving a total of 45 
sets. Datasets were truncated such that the minimum detection 
probability per set was approximately 0.15 (Buckland et al. 
2001). Data were generally grouped into 9–13 intervals to 
correct for rounding/heaping errors and to smooth irregular 
datasets. Of 45 datasets, only five that had exceptionally high 
sample sizes were analysed ungrouped.

Covariates of detectability entered the model in the form 
of a scaling parameter (sigma) that controls the width of 
the detection function, thus influencing its scale (Marques 
& Buckland 2003). The parameters selected were: season, 
observer, wind speed, heard/seen, habitat, and minutes since 
sunrise (Table 2). The first three of these parameters were 
applied equally to all detections of a transect, while the last three 
were applied separately for each detection. Observer described 
whether the transect was carried out by the main observer, any 
one of the other observers, or two observers at the same time 
(a small percentage, used for training new observers). Wind 
speed was recorded three times per day using a Kestrel 400 
portable weather meter, and applied to the transects closest in 
time to each occasion. Heard/seen was recorded as ‘heard and/
or seen’ if the bird was detected visually while establishing 
its position, regardless of whether first detection was by ear 
or eye, and as ‘heard only’ if the bird was heard but could not 
be detected visually (e.g. hidden in vegetation). Habitat was 
recorded in three broad categories at time of detection (Table 
2). Factor covariates (all except wind speed and minutes since 
sunrise) were constrained to a maximum of three levels to avoid 

unbalancing models based on small datasets. (See Appendix 
1 for an example demonstrating the effect of the parameter 
wind speed on a detection function.)

Model selection and averaging
We generated all possible models for each species and farm 
with combinations of (1) either of the two recommended 
key functions (half-normal or hazard-rate; Buckland et al. 
2001), (2) up to any two of the six covariates, and (3) with 
or without one of the three available series expansions. Any 
covariates resulting in a conspicuously improved model fit were 
trialled in up to fourth-level combinations. Model selection 
was performed using Akaike’s Information Criterion (AIC) 
and Akaike weights (Akaike 1973). AIC ranks models for 
fit and identifies the most parsimonious models (best model 
fit with the least number of added parameters). A second-
order derivation (AICc) that compensates for small sample 
sizes (c. <40) has often been used to rank Distance models 
(Burnham & Anderson 1998). We used AICc scores as ranking 
criteria, and searched for models with a delta AICc below 4 
as having reasonable support (Burnham & Anderson 1998). 
Models falling under the following additional criteria were 
also eliminated: (1) convergence failure of the fitting algorithm 
(excluding termination of algorithm after 500 iterations); (2) 
g(0) [detection probability = 1] exceeded first histogram bar 
by more than 5%; (3) series expansion levels were fitted to 
obvious artefacts or incidental features; (4) model variance 
was conspicuously larger than in similarly scored models; 
(5) model was subject to ‘pretending variables’ (Burnham & 
Anderson 1998). In our models the AIC differences between 
top models were generally slight, so a clear best model was 
rarely apparent. Hence, estimates of density and detection 
probability were derived from averaging over each set by default 
(Burnham & Anderson 1998). The averaging of estimates and 
variances using Akaike weights was performed manually in 
OpenOffice Calc 2.2.1 (www.openoffice.org).

Table 2. Covariates used in constructing detection function models and general linear models.
__________________________________________________________________________________________________________________________________________________________________

Covariate Type Levels Comments
__________________________________________________________________________________________________________________________________________________________________

Detection function modelling  
Season Factor Breed, post, winter ‘Breed’ = Sep–Jan; ‘post’ = Feb–May; ‘winter’ = Jun–Aug
Observer Factor Main, other, main  ‘Other’ covers 7 observers 
  & other 
Heard/seen  Factor Heard, seen Whether the bird was detected by ear only or was seen as well
Habitat Factor Veg, open, other ‘Vegetation’ covers all types of woody vegetation (native and introduced,  
   incl. shelterbelts; ‘open’ covers paddocks/pasture and crops; ‘other’ covers  
   bare ground, utility areas and wetlands
Minutes since Continuous - Recorded at start of transect 
sunrise
Wind speed Continuous - Recorded three times over the course of 10 transects

General linear modelling  
Panel Factor Cont, int, org Farm management type: ‘con’ = conventional; ‘int’ = integrated   
   management; ‘org’ = certified organic
Season Factor Breed, post, winter ‘Breed’ = Sep–Jan; ‘post’ = Feb–May; ‘winter’ = Jun–Aug
Cohort Factor 1, 2 Timespan from beginning of ‘breed’ season to end of ‘winter’ season in   
   each of the two years
Vegetation cover Continuous - % woody vegetation incl. shelterbelts in total farm area (1 - ~ describes %  
   of open area)
Introduced cover Continuous - % introduced woody vegetation incl. shelterbelts in total farm area
Percent introduced Continuous - % introduced woody vegetation incl. shelterbelts in total woody vegetation  
   1 - ~ describes % of native woody vegetation in total woody vegetation
__________________________________________________________________________________________________________________________________________________________________
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Covariate influence estimation
To compare the relative importance of individual covariates for 
model fit in a set, the ‘score’ of each covariate was computed 
for each species-by-farm set of models as the sum of the 
Akaike weights of all models that contained this covariate 
(Burnham & Anderson 1998). Since a single Akaike weight 
value describes the probability that a given model is the best 
model in a set, this sum can be treated as a measure of the 
covariate’s contribution to the total fit of all relatively well 
fitting detection functions in the set. ‘Sigma ratios’ (Marques & 
Buckland 2003) were derived from the scale factor sigma that 
controls the width of the detection function (see Appendix 2 for 
the full list of covariate scores and explanation of estimation 
methods for sigma ratios).

Influence of farm-level drivers on detectability
Estimates of ‘effective strip width’ (ESW) were generated for 
each model. If all objects were detected out to this distance 
to both sides of the transect and none beyond, the expected 
number of objects would be the same as for the actual total 
survey out to the chosen truncation distance (Buckland et al. 
2001). It follows that the area transect length × 2 × ESW can 
be considered equivalent to the completely censused area. This 
makes effective strip widths a flexible spatial derivative of the 
transect’s average detection probability that incorporates the 
truncation distance used.

Since detections from all 10 circuits were pooled in the 
interest of larger sample sizes, species-by-farm ESWs spanned 
the entire survey duration. For the three farm-species cases 
where no model could be fitted (two thrush and one blackbird 
sets), the ESWs were averaged from the values of the other 
two farms in the cluster. To test for seasonal differences in 
detectability, farm-specific seasonal ESWs (sESWs) for each 
species were then computed from the model estimates by 
evaluating the full detection function for the individual three 
levels of the covariate ‘season’, and integrating the function 
(Thomas et al. 2010). This was done only for those models 
where the ‘season’ covariate weight in the set was ≥ 0.1 (to 
filter out species-by-farm combinations where season had 
already been shown to have little influence). Seasonal ESWs 
that included less than 10 sightings in that season, or for which 
the model curve did not pass general quality criteria (above), 
were removed. In cases where no seasonal ESW was computed, 
the all-year ESW was used. Out of a maximum 36 cases per 
species (12 farms × three seasons), 18 seasonal ESWs were 
contructed for skylarks, 11 for blackbirds, six for thrushes, 
and 12 for magpies.

Several farm-level explanatory parameters were fitted to 
the sESWs in a general linear model to test their influence on 
estimated detection probability (Table 2). Hierarchical general 
linear modelling (Bryk & Raudenbush 1992) as implemented 
in GenStat 9.1 was employed, as this allowed the inclusion of 
farm identity as a random factor to account for the fact that 
each farm had been sampled 9 or 10 times. 

Interest here was in effects on farm-scale estimates of 
density, so parameters that applied to the entire farm were 
chosen (Table 2). Season was the same parameter used as a 
distance modelling covariate, while panel described the three 
recognised farm management regimes. The three vegetation 
measures used were area percentages derived from map data 
using ArcGIS, based on land-use maps created by the ARGOS 
project. The measures described the percentage of all woody 
vegetation on total farm area (vegetation cover), percentage 

of introduced woody vegetation on total farm area (introduced 
cover), and percentage of introduced woody vegetation in total 
woody vegetation (percent introduced). All three measures 
include shelterbelts. Percentage of native vegetation in total 
farm area was found not to explain variation in ESW during 
preliminary model building and therefore was omitted from 
consideration.

Strong collinearity was found between vegetation cover 
and percent introduced, so the two parameters were not included 
in the same models together. All parameters were centred 
(mean subtracted from each instance) to avoid collinearity of 
lower-order terms with interaction terms in the hierarchical 
general linear model (following Quinn & Keough 2002). The 
resulting models were selected using the same criterion as with 
the Distance models (a threshold value of AICc difference ≤ 
4 from the best model).

Results

Role of covariates in modelling bird detectability
The overall highest scored covariate was ‘minutes since 
sunrise’ (Fig. 2). It was selected most frequently in blackbird 
models, followed by skylark and magpie models, and still 
moderately frequently (23%) in thrush models. There was no 
real tendency towards either detectability increase or decrease 
with time since sunrise in three of the species, but there was 
a clear positive correlation in skylarks (Table 3).

‘Wind speed’ had moderate to high explanatory power 
for detectability of all species. It increased detectability in 
blackbirds and decreased it in magpies. The effect of wind 
speed was inconclusive (no distinct direction) in thrushes and 
skylarks. The ‘heard/seen’ ratio had low to moderate overall 
influence (Fig. 2). There was no clear effect of the two levels on 
detectability in skylarks and thrushes, but there was a distinct 
positive effect of ‘heard only’ over ‘seen’ in blackbirds and 
magpies (Table 3). ‘Observer identity’ featured strongly in 
thrushes, but less in the other species (Fig. 2). The relative order 
of effect strength of the three covariate levels (main observer, 
other observer, and main+other observer) differed between 
species but, except in blackbirds (where no clear direction 
was visible), the presence of the main observer was always 
associated with the highest detectability (Table 3). ‘Habitat’ 
was a lot more important in blackbirds than in any of the other 
species (Fig. 2). In skylarks and blackbirds, levels ‘open’ and 
‘other’ were consistently associated with higher detection 
probability than level ‘veg’ (denoting woody vegetation; 
Table 3). ‘Season’ was most important for skylarks (Fig. 2), 
but although there was some tendency for higher detectability 
in the breeding season, there was no clear correlation. Thrush 
models showed lower detectability in ‘post-breeding’ than in 
the other seasons, although the importance of this covariate 
was low. The other species showed no trends (Table 3).

Table 3 also shows those correlations between sigma ratios 
and effect directions that appear relatively consistent over all 
farms and species. Globally, only the effects of habitat type 
(‘other’ corresponds to a higher or equal detectability than 
‘open’ and to a higher detectability than ‘vegetation’) and 
of observer identity (main observer corresponds to a higher 
detectability than the other observers) seem to be applicable. 
Models without any added covariates were not very common 
for any species, and particularly rare for blackbirds (Fig. 2); 
thrushes had the highest incidence of such models, probably 
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Figure 2. Cumulative covariate scores (sums of Akaike weights 
of models containing the covariate) per species, averaged over 
all farms, denoting the covariate’s relative importance in defining 
well-fitting models for that species. ‘None’ denotes models with 
no covariates. Type size is graded in five levels from lowest 
value present (0.08) to highest (0.44). For individual scores see 
Appendix 2.
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Table 3. Consistent trends over all farms in covariate scale factors (sigmas) per species, denoting levels (factor covariates) 
or deviations from 0 (continuous covariates) that were associated with increased detection probability. See Table 2 for 
description of parameters.
__________________________________________________________________________________________________________________________________________________________________

Covariate Sigma ratios over all farms  Sigma ratios over all farms within species 
 & species 
 All species Skylark Blackbird Thrush Magpie
__________________________________________________________________________________________________________________________________________________________________

Season - Breed > post - Breed, winter > post -

Habitat Other  ≥ open, vegetation Open, other >  Open, other >  - Other > open 
  vegetation vegetation 

Observer Main ≥ other, main+other Main, main+other  - Main, other >  Main > other, 
  > other  main+other main+other

Heard/seen - - Heard > seen - Heard > seen

Wind - - Positive - Negative

Minutes - Positive - -
__________________________________________________________________________________________________________________________________________________________________

due to the often poor detection numbers, which did not allow 
the fitting of complex models.

Influence of farm-level drivers on detectability

Seasonal and farming system effects
Season-specific effective strip widths were constructed for 
about one-third of all species × farm × season combinations. 
Annual ESWs were used as seasonal values in the remainder. 
There were notable differences between individual farms, 
but these did not follow any readily discernible pattern of 
farm geographical location (Fig. 1a). Consistent interspecies 
differences were present for each species, with magpies having 
by far the largest and thrushes the smallest widths (Fig. 1a, 
b). However, there were few seasonal changes in detectability 
within each species or across all species (Fig. 1b).

Lack of systematic differences in detectability between 
either farm locations or sampling seasons was confirmed by an 
analysis of variance. No significant sESW differences between 
seasons or management systems were found for any species in 
linear mixed models (REML) fitted to the log10-transformed 
estimates and incorporating panel, season, and panel within 
season as fixed (treatment) factors. Season was also used as 
a random (blocking) factor.

Dependence of effective strip width on farm-level habitat 
parameters
A general linear model linking sESWs to habitat of each 
species worked very well for magpies, acceptably well for 
blackbirds, but less well for skylarks (average R2 = 70.8, 28.9 
and 12.9 respectively). An F-test of the model’s fit was still 
in an acceptable range (P = 0.063) for skylarks. No workable 
models could be found for thrushes (Table 4).

Detectability decreased strongly as woody vegetation cover 
increased. A significant decline in detectability in skylarks and 
blackbirds was connected only with increase in vegetation 
cover, whereas both vegetation cover and introduced vegetation 
cover predicted ESW in magpies. Magpie models also displayed 
a positive interaction between these two vegetation types, 
indicating a mutual reinforcement of these indices’ negative 
effect on detection probability (Table 4).

We found no evidence of seasonal differences in 
detectability except perhaps in blackbirds. Although inclusion 
of ‘season’ yielded a borderline significant increase in the 
blackbirds’ model fit (P = 0.061), levels breed/post/winter 
were not sufficiently different from each other to unequivocally 
indicate the effect of each level. Detectability was higher in 
winter than in the other two seasons. A highly significant 
interaction between the influence of vegetation cover and season 

Table 4. Parameters with significant effects in the hierarchical general linear model (HGLM) regressing seasonal effective 
strip width on farm-level habitat parameters. For vegetation percentage measures, \\ signifies a negative effect on effective 
strip width with increasing parameter magnitude. (*) signifies cases where a factor parameter contributed significantly to 
model fit, but no difference between parameter-level effects was present. Akaike weight-averaged R2 and F-test probability 
(P) are derived from general linear models with the same data structure as the HGLMs, but no blocking factors.
__________________________________________________________________________________________________________________________________________________________________

Species R2 P Parameters with significant effects in confidence set 
   Continuous vegetation Panel Season Cohort Interactions
__________________________________________________________________________________________________________________________________________________________________

Skylark 12.95 0.063 Vegetation cover \\ - - - -

Blackbird 28.93 0.002 Vegetation cover \\ - (*) - Vegetation cover × season:  
       negative interaction

Thrush - - - - - - -

Magpie 70.80 <0.001 Vegetation cover \\ , percent introduced \\ - - - Vegetation cover × percent  
       introduced: positive   
       interaction
__________________________________________________________________________________________________________________________________________________________________
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in blackbirds points in the same direction, i.e. detectability on 
farms with little vegetation was higher in winter than either in 
the breeding season (P = 0.116) or post breeding (P = 0.083). 
No difference was found between the two annual cohorts in 
any species, showing that detectability did not differ between 
the two years that the survey spanned.

Farming system explained none of the variation in sESW, 
just as no evidence of effects on detectability differences were 
found in our earlier panel × season REML. This agrees with 
an assessment of the distribution of the apparent primary 
detectability driver (woody vegetation cover) in the panels – a 
test by analysis of variance showed no significant differences 
between panels for any of the three vegetation percentage 
measures (vegetation cover P = 0.632, introduced cover 
P = 0.861, percent introduced P = 0.715 ).

Discussion

Reliability of distance modelling
The reliability of the results of any study employing a complex 
sampling methodology depends on meeting the method’s 
basic assumptions. Distance sampling is based on several 
fundamental assumptions that need to be satisfied by the data 
to avoid the introduction of bias into the abundance estimates 
obtained (Buckland et al. 2001; Table 5). The condition of 
complete detection of all birds on the transect line itself was 
relatively easy to meet in the mostly open farmland habitats. 
The main cause of missed detections on the line in land bird 
surveys is an obscuring overhead canopy, which was only 
present in a small percentage of transects. A random and 
independent distribution of birds in the surveyed area is a 
condition for the reliable estimation of the results’ precision, 
and may be jeopardised if transects tend to follow gradients 
of bird density, and if birds occur in clusters. We avoided 
this bias by placing transects randomly, and by modelling the 
presence of flocks within Distance (Buckland et al. 2001). 
Further, it is assumed that animals do not move in response 
to the observer before they are detected. This is difficult to 
assure in the field as some species tend to detect the observer 

early and retreat to a comfortable distance, which can bias the 
distribution of detection distances. A similar effect results from 
violations of the fourth fundamental assumption, that distance 
measurements are free of systematic error; this is often not the 
case if observers tend to round values (particularly angles). 
Both of these problems were present in some of our data, but 
could be effectively addressed during modelling by allocating 
detections into intervals to smooth rounding artefacts, and 
by employing functions with a constrained shape (shoulder) 
close to the origin where biases can have the greatest impact 
on estimation (Buckland et al. 2001). We conclude that the 
basic assumptions of distance sampling were satisfactorily 
met in this survey and that, in conjunction with the intensive 
model screening approach employed, the conditions for reliable 
estimation of detectability were present.

Impacts of covariates and farm-level variables on 
detectability
Of the parameters available as covariates for distance model 
building, the effects of observer identity and broad habitat type 
showed the greatest consistency across all species, even though 
the identities of all observers beside the main one had to be 
combined for model fitting. The main observer was consistently 
associated with high or the highest detectability. It might have 
been expected that the double-observer transects (main+other), 
with approximately double the detection capability, would 
result in higher detectability. However, this was not the case, 
probably because only a few of these were performed (3–4% 
of all transects) and because they were used for instructing 
new observers. Observer identity was particularly important 
in thrush models, probably because some part-time observers 
(taking part in the survey for periods of no more than three 
circuits each) had difficulty in distinguishing between thrushes 
of either sex and female blackbirds, and between singing male 
thrushes and blackbirds. The long-term observers rapidly 
gained confidence to identify thrushes. Failure to find a model 
for thrush ESW with any significant fit for any of the three 
main vegetation measures (Table 4) was also probably due 
to the comparatively low reliability of thrush data. Several 
studies have shown that novice observers will generally tend 

Table 5. Assumptions of line transect distance sampling and their handling in this survey. Based on Borchers et al. (2002).
__________________________________________________________________________________________________________________________________________________________________

Assumption Effect of violation Assumption met in this study?
__________________________________________________________________________________________________________________________________________________________________

All animals on the line are detected  Density estimate is negatively biased in Yes: only a small percentage of transects 
(i.e. g(0) = 1) proportion to actual g(0); e.g. g(0) = 0.8  was in locations where detection on the line 
 results in an estimate that is 80% of true  might be missed (e.g. high canopy) 
 density 

Animals do not move before detection Bias negligible if movement is random.  Evasive movement frequently present, but 
 If movement is in response to observer,  addressed in the same manner as above 
 negative or positive bias can result (grouping data into intervals, use of models  
  with shoulder)

Measurements are exact Method is robust to random errors.  Rounding of angles frequently present, but 
 Systematic errors like habitual rounding  addressed in the same manner as above 
 or over/underestimation will result in bias (grouping data, models with shoulder)

Animals are randomly and independently  Biases confidence intervals of estimates Transect placed randomly in regard to 
distributed  possible density gradients. Clustered   
  populations present, but addressed in 
  modelling (clusters treated as individual 
  detections and cluster size recorded   
  separately)
__________________________________________________________________________________________________________________________________________________________________
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to miss more detections than experienced observers and have 
lower accuracy in identification, negatively biasing the survey 
outcome, but usually quickly gain the same level of competence 
(Sauer et al. 1994; McLaren & Cadman 1999; Jiguet 2009; 
but see Kendall et al. 1996). This underlines the importance of 
providing new observers with sufficient training to minimise 
this source of bias. Inferences from thrush detections were 
likely less reliable in this survey than for the other species.

‘Open’ and ‘other’ habitats tended to be associated with 
higher detectability than areas covered by woody vegetation, 
the values for ‘other’ tending to be higher again than for 
open. Lower detectability in vegetated areas was an expected 
outcome due to shortened lines of sight, concealment of birds, 
and dampening of calls. As the ‘other’ category is comprised 
largely of sown or ploughed paddocks, this illustrates the 
effect of birds congregating in these places to forage, enabling 
frequent detection over long distances. Vegetation had less 
effect and showed no directional influence for thrushes, 
perhaps because of behavioural differences. Blackbirds tend 
to congregate around food sources (often ploughed fields) for 
feeding during their autumn moult, while thrushes become 
secretive and keep to vegetation (Heather & Robertson 2000). 
Conversely, the relatively weak fit obtainable for skylark 
ESW models probably reflects genuinely low dependence of 
detectability on farm-level vegetation patterns for this species. 
Most skylarks were detected at medium range for birds in 
flight or displaying above open areas, limiting the obscuring 
effect of any vegetation present on the farm. Dependence 
of ESW on vegetation cover was pronounced in blackbirds, 
which might be found in vegetation as well as in open areas. 
It has been shown that in songbird surveys, the reliability of 
distance estimations from purely auditory cues is likely to be 
poor when both the observer and the bird are situated within 
vegetation (Alldredge et al. 2007). While detection distance 
would have been curtailed when the observer himself was 
situated within bush or tree patches, this negative effect was 
likely offset to some extent by aural detections of singing or 
calling blackbirds in vegetation when the observer was in 
the open. Both kinds of observations would be associated 
with vegetation, but only the former would result in reduced 
detection distances and accounted for less than 4% of total 
sightings. The indication of a seasonal reduction of this effect 
in winter likely relates to the winter congregation behaviour 
around food sources in open areas. 

Increasing percentage cover of both total vegetation and 
introduced vegetation were associated with strong decreases 
in detectability in magpies. It is likely that the large detection 
and ‘flushing’ distances for magpies (c. 155 m, more than 
twice as large as the average detection distances for the other 
species) makes them very susceptible to blockage of line of 
sight, particularly by shelterbelts. The effects of such blockage 
are not counteracted by magpies calling from such woody 
vegetation in the way observed for blackbirds. Detectability 
of skylarks was much higher later in the day. This does not 
relate to song activity, which has been shown to be about 
constant throughout the day (Kayser 1999), but might be 
related to feeding and resting patterns. Increased wind speed 
correlated with increased detectability in blackbirds, but 
decreased detectability in magpies. Wind noise would be 
expected to decrease detections by sound, and birds might 
undertake fewer or less sustained flights in high winds, so the 
increased detectability of blackbirds in higher wind speeds was 
unexpected. While not very strong (c. 36% sigma deviation 
from neutral), there is no obvious explanation.

The distinction between ‘heard only’ and ‘seen’ was a 
moderately important explanatory variable in all species. 
However, the direction of its effect varied on different farms for 
skylark and thrush, whereas places of increased detectability of 
magpies and blackbird were associated with more of the birds 
being just heard rather than seen (or seen and heard). In the 
latter species, distant detections while perched in vegetation 
across open terrain might explain the effect because calls/
singing are probably easier to notice over large distances 
than are visuals. While this would also be true for displaying 
skylarks, these birds were never concealed in vegetation – a 
confirmed skylark detection invariably meant visual detection 
– leading to lowest importance of this covariate among species. 
Our grouping of detections into ‘heard only’ and ‘heard and/
or seen’ as used in this study is non-standard and performed 
markedly less well than the more common grouping of ‘heard 
first’ and ‘seen first’, in which form the parameter has frequently 
proven to be among the most important explanatory variables 
of detectability (Marques et al. 2007; Johnson 2008; Newson 
et al. 2005, 2008; MacLeod et al. 2012). This common form 
seems preferable as it results in groupings that can be more 
profitably mapped to frequently encountered categories of 
detectability.

Season affected detectability in skylarks and, to a lesser 
degree, blackbirds, although no consistent directionality of 
this effect was apparent for blackbirds. Skylark displaying 
behaviour led to a clear increase in detectability during the 
breeding season, when males mainly sing and hover 50–100 
m above the ground (Heather & Robertson 2000). Apparently 
displaying was more important for detectability than was 
their flocking behaviour in winter (Cramp 1977) because 
most skylark detections were first detected by hearing their 
singing. Inconspicuous behaviour during moult (Heather & 
Robertson 2000) was presumably the reason for lower thrush 
detectability post-breeding, in the few cases where this covariate 
was selected for the species. For blackbirds and magpies, the 
order of the three seasons tended to even out over all farms.

Reliability of inference from covariates
The highest selection percentage for any single covariate within 
a species was 44% (minutes from sunrise in blackbirds); the 
average selection percentage was 23% across all covariates 
and species. There was thus little dominance of individual 
covariates even within species. In several species–farm sets, a 
variety of covariates could be included to achieve similar model 
fits. Also, the majority of covariates showed both negative and 
positive influence on detectability with increasing magnitude 
(continuous parameters) or permutations in the order of level 
influence (factor parameters) between farms within a species. 
Despite this low consistency, just 17% of total Akaike weight 
over all farms was made up of models without any covariates 
at all, so they almost invariably added to model fits, even 
under the parsimony constraints imposed by AIC selection.

These observations raise the question of how well-founded 
are inferences based on the frequency and effects of these 
covariates. When modelling complex ecological relationships, 
there is a danger of finding effects that are merely artefacts of 
the particular dataset (Anderson et al. 2001). First, small sample 
sizes relative to the number of parameters being estimated 
might result in over-fitting of incidental characteristics, and 
(particularly with iterative fitting processes like the one used 
by program Distance) instability of models, both promoting the 
overestimation of set artefacts into significant characteristics. 
The use of parsimony criteria like AIC is a method to prevent 
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inflation with parameters. Our further screening (see Methods) 
was designed to remove models with obvious over-fitting of 
incidental features or empty over-parameterisation (‘pretending 
variables’; Burnham & Anderson 1998). The recommended 
minimum sample size for distance analysis (c. 60 detections; 
Buckland et al. 2001) was not met in nine out of 48 species-
by-farm cases, five of them in thrushes. While this will have 
weakened the inferences made for that species in particular, 
similar effects would not be expected across all other species.

Second, the ‘all possible subsets’ method of model selection 
constitutes a mild form of data dredging that potentially 
seeks out complex parameter combinations that happen to 
coincidentally fit a particular dataset very well (Anderson et al. 
2001). Nevertheless the method is probably more robust than 
its alternatives. For example, fitting only models designed from 
previous knowledge of plausible parameter-to-detectability 
relationships runs the risk of completely missing unconsidered 
explanatory structures. Stepwise selection runs the same risk of 
special fitting, and will bypass alternative branches of models 
that may have explanatory power of their own (Burnham & 
Anderson 1998). Therefore, although our interpretation of 
covariate effects can only be preliminary, we recommend the 
investigated covariates (time of year, time of day, habitat type, 
observer identity, heard/seen, and wind speed) for recording 
in the field and use in modelling. Further parameters that 
were not recorded in this study might be considered – these 
include data derived from terrain models, such as steepness or 
landform restrictions to lines of sight, and specific interactions 
between covariates such as wind speed and vegetation cover.

However, there is no need in distance sampling to 
individually account for every possible source of variation 
in detectability. This is ensured by the property of pooling 
robustness (Buckland et al. 2004), which allows for largely 
unbiased estimates from pooled data collected under different 
detectabilities. If interest is mainly in the generation of unbiased 
pooled density estimates, this property will often make it 
unnecessary to employ covariates. The use of covariates, on 
the other hand, generally provides a marked benefit to estimate 
precision (Marques & Buckland 2003), and may be needed 
when estimating differentiating segments of the population. For 
example, it has been shown that in species with pronounced 
detectability differences between genders, densities will tend 
to be underestimated in distance sampling if sex is not taken 
into account (Newson et al. 2008). 

Implications for design of bird monitoring methods
Coverage of farm areas was not perfectly uniform, as 
comparatively few transects were performed in areas where 
woody vegetation was very heavy – firstly because no GPS 
coordinates (intended for further spatial analysis of bird 
distributions) could be collected here, and secondly because 
it was found that close-to-zero detections resulted from 
transects through very difficult terrain because the observer 
was preoccupied. Although this may have led to a weakening 
of the explanatory power of the farm-level vegetation cover 
measures, this effect was probably less severe with our four 
focal species than it would have been with native species 
that show a much higher habitat reliance on large native bush 
patches. While conclusions drawn from these models cannot 
automatically be extended to such species, the three species 
that could be fully modelled cover a species that is at home on 
open pastures and does not associate with woody vegetation 
at all (skylark), a species that forages mostly in the open but 
roosts and nests in vegetation (magpie), and a species that 

spends a substantial amount of time in or near bush and tree 
patches (blackbird). This suggests that our findings can be 
generalised to some extent.

Overall, the gross percentage of general woody vegetation 
on farms emerged as the dominant driver of detectability, while 
vegetation composition (native or introduced) had little effect. 
As vegetation patches on the surveyed farms varied from 
coniferous shelterbelts to native bush, this suggests that bird 
detectability is similar in different woody vegetation types, 
even though woody vegetation generally obscures birds from 
detection, and the detectability of birds in vegetation tends 
to be noticeably different from that in open habitats. Had we 
simply used bird counts without accounting for detectability, 
or not built measures of habitat into the Distance analysis to 
enable variability in detection functions, the true extent of the 
importance of woody vegetation for biodiversity (Blackwell 
et al. 2008; Meadows et al. 2008; Moller et al. 2008) would 
have been obscured. The bias when comparing bird abundance 
(and perhaps also diversity) in landscapes with differing degrees 
of woody vegetation patches and open areas will mislead 
inferences. Therefore we caution that abundance estimation 
by relative indices (e.g. five-minute bird counts) will only be 
robust within large and uniformly wooded patches, or within 
large uniformly open ground. Seasonal differences did not show 
up as drivers of ESW differences, but season was a significant 
distance sampling covariate for skylarks in particular. Small 
sample sizes may have greatly reduced power to detect such 
effects in other species; it would therefore be unwise to ignore 
season as affecting detectability when choosing bird monitoring 
methods.

None of our four focal species showed any differences 
in detection probability between certified organic, integrated 
management, and conventional farms. For research programmes 
that investigate the ecosystem effects of different approaches 
to farm management, e.g. the ARGOS group, this finding is of 
interest since it points at the possibility of using simpler and 
highly efficient index count methods to compare populations 
among study sites. Nevertheless such an approach would 
crucially rely on standardising counts with respect to the other 
detectability drivers noted above. While index count methods are 
generally attractive for solving questions of population dynamics 
over time in comparable habitats, if such standardisation can 
reliably be implemented, this may be a more difficult task 
than is often realised by researchers. When possible drivers of 
detectability have to be dealt with by controlling for them at the 
survey design stage, any missed might only become apparent, 
and probably still remain unidentified, once different batches 
of estimates were compared (Weller 2012). This might in the 
worst case invalidate a season’s work and necessitate a redesign 
of the sampling regime. In a modelling-based approach like 
Distance sampling, drivers can be tested and accommodated 
as needed, allowing great flexibility at the analysis stage as 
long as the necessary information has been collected in the 
field. Once the basic increase in effort for the more complex 
method has been committed to, the cost of recording additional 
parameters is typically very low, enabling the surveyor to cover 
many possible bases at little extra investment. Such a regime 
can also easily be simplified later on by removing ineffective 
parameters from the protocol. In most cases it will be easier to 
simplify a flexible method than to try to upgrade an inherently 
limited one. We recommend that in addition to the more obvious 
considerations of surveying effort and estimate quality (Weller 
2012), researchers should be aware of this trade-off in analysis 
resilience when designing a survey.
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