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Abstract: When designing large-scale bird monitoring schemes, financial constraints often require researchers 
to make trade-offs in the spatial resolution and precision of the density estimates by varying the number of sites 
monitored and the intensity of sampling effort per site. Here, I compare density estimates of four common farmland 
bird species (skylark, blackbird, song thrush, Australasian magpie) on South Island sheep & beef farms collected 
using a large-scale monitoring scheme with equivalent estimates from a more intensive survey, and discuss 
possible sources of imprecision and bias in each. Density estimates from the intensive survey were generally 
lower and more precise than the monitoring-scheme ones, and the surveys were susceptible to different types of 
bias. These effects were linked to combined differences in modelling methods and sampling effort distribution, 
and to observer-related issues. In long-term designs, estimates from data pooled over several annual surveys 
are likely to become accurate quickly, but an increase in monitoring effort per site may be required to increase 
the precision of individual-survey estimates. Species that pose challenges to observers may be hard to estimate 
accurately with the monitoring-scheme design explored here, and the use of pilot surveys is recommended. Raw 
count data from the same species were tested for their usefulness in the creation of reliable relative population 
indices. A sufficiently constant ratio of plot-count indices to absolute density estimates was found in skylarks 
and thrushes, while inclusion of a correction parameter to account for woody vegetation effects on detectability 
was necessary in blackbirds, and magpie estimates proved unreliable. Similar analyses are recommended for 
all monitored species when trend estimation using relative indices is intended.
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Introduction

Designing a bird monitoring survey is an exercise in 
transforming available resources into the most appropriate 
data. The overall design of any large survey programme will 
be dictated by the primary aim of the project. This might be 
broadly categorised as interest in population distribution, 
indices of population change, or evaluating the effects of 
management actions, in ascending order of resolution and 
cost of result (Johnson 1999; Svensson 2000). Generating 
information on long-term population trends, achievable using 
index counts, has frequently been the foremost aim of large 
monitoring schemes (MacLeod et al. 2012a). In contrast, 
the answering of specific ecological questions or tracking 
of specific conservation and management actions is often 
relegated to more specialised projects that can expend the 
effort to produce estimates of absolute abundance (Johnson 
1999). It is, however, often entirely feasible to structure a 
large longitudinal study in such a way that it yields accurate 
estimates of absolute abundance while still covering large 
areas (e.g. Newson et al. 2005, 2008).

Ideally, the results of a survey should be both precise (i.e. 
repeated measurements, taken under the same conditions, 
should show the same results to a high degree) and unbiased 
(i.e. no systematic errors should be present in the estimates 
compared with the true value). In practice, this will generally 
be hard to realise. Financial and practical constraints frequently 
make it necessary to trade off either or both of these qualities 
against other factors. Depending on the type of survey, this 
might concern the number of temporal replicates and the 
coverage of different times of the year, the spatial scope and 
spatial resolution of the survey (trade-offs in the application of 
available effort to smaller or larger areas or number of areas), 
and constraints on field methods, e.g. limitations on observer 
continuity, training, or equipment. Survey design to control 
for bias and imprecision thus has to be shaped by priorities. 
Lack of bias (i.e. accuracy) is important when interest lies in 
closely approximating a ‘true’ value and absolute population 
sizes are required, and for comparisons across survey types; 
fundamentally, the presence of different biases in different 
results makes them incompatible, and the only solution is 
recognition and removal. Precision is most important where 
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repeat measurements are concerned, and confidence in 
relationships within a series is needed. This is primarily the 
case in trend estimation.

The expected precision and susceptibility to bias of a 
survey may be difficult to assess before implementation, 
although approaches such as statistical power analyses can 
be of great benefit. Often, useful information may only be 
gained after some results are available for investigation. A 
comparison with estimates derived from an alternative source 
can be particularly useful at this stage. I therefore carried out 
a comparison of two bird surveys, undertaken on the same 
properties and with an overlapping time frame, to investigate 
likely sources of imprecision and bias in each.

The two survey designs discussed are the ongoing ARGOS 
farmland bird monitoring scheme and a short-term intensive 
bird survey carried out on a subset of the same area. These 
surveys represent two different design approaches. The ARGOS 
scheme is a longitudinal study covering many sites in an ongoing 
programme, and trades this off against limited data from each 
site visit. The intensive survey had a more limited temporal 
and spatial scope with monitoring effort applied to deliver 
higher replication at fewer farms. Distance sampling methods 
(Buckland et al. 2001, 2004) were used in both designs as a 
way to transform raw counts into absolute density estimates. 
This removes imprecision and bias generated by changes in 
detection probability, which, for example, may depend on 
species behaviour, habitat type, and observer identity (e.g. 
Newson et al. 2005, 2008; Alldredge et al. 2007; MacLeod et al. 
2012b), with the aim of producing abundance estimates that are 
as unconditional as possible. Failure to account for variation in 
detectability will tend to underestimate true densities (Norvell 
et al. 2003; Newson et al. 2005, 2008; White 2005; Buckland 
2006). However, if absolute estimates are not a high priority, 
simpler (uncorrected) counts might serve instead. In many 
situations uncorrected estimates are of use as relative indices, 
e.g. to track population trends on the same sites across time. 
As this is one of the objectives of the ARGOS survey, the use 
of uncorrected estimates produced from raw detection data 
to supplement the results is an interesting possibility. As a 
secondary focus, I therefore tested the reliability of raw count 
estimates derived from the intensive survey.

Methods

Survey design
This study assessed the effect of varying the intensity of 
sampling effort on individual farms on the precision and 
accuracy of density estimates for four focal species (skylark 
Alauda arvensis, blackbird Turdus merula, song thrush 
T. philomelos, Australasian magpie Gymnorhina tibicen), by 
comparing information collected by a long-term monitoring 
scheme with that collected using an intensive survey effort. 
The study focuses on 12 sheep & beef farms on the South 
Island of New Zealand, which were a subset of the 36 sites 
monitored by the ARGOS monitoring scheme (MacLeod et al. 
2012b). The 12 farms were grouped into four clusters (of three 
farms each) located on Banks Peninsula (Canterbury) and near 
Oamaru (Otago), Outram (Otago) and Owaka (Southland).

The ARGOS monitoring scheme was set up in 2004, with 
three surveys carried out over a 6-year period (summers of 
2004/05, 2007/08 and 2009/10). All surveys were undertaken 
in December–January, the core breeding season for most of 
the monitored species; each farm was surveyed once during 

each of the three rounds, and all bird sightings were recorded. 
Results from these three surveys were analysed separately at 
survey-level (‘ARGOS 1–3’) and pooled (‘ARGOS Global’) 
(MacLeod et al. 2012b), based on models fitted to the complete 
36 farm dataset and evaluated for the 12 focus farms (which were 
a subset of those included in the ARGOS monitoring scheme).

The ‘intensive’ survey was limited to the 12 focus sheep & 
beef farms, with only the four focal species monitored. Surveys 
took place between November 2005 and August 2007, thus 
overlapping the initial two monitoring scheme surveys. Each 
farm was visited 9–10 times (circuits): five visits occurred 
during the breeding season of the focal species (September–
January), two in winter (June–August), and three in between 
(February–May). Sightings for each farm were pooled over all 
visits for analysis (Weller 2009; Weller et al. 2012).

Line-transect distance sampling was used as a monitoring 
method (Buckland et al. 2001; Spurr et al. 2012), and a standard 
distance sampling protocol was followed (MacLeod et  al. 
2012b). In both surveys, 8–12 line transects of target length 
500 m (randomly placed each time) were walked on each farm 
visit and sighting distances and angles recorded using a laser 
rangefinder and compass.

Estimating density
Detections were modelled in Distance 6.0 and 6.0 Beta 1 
(Thomas et  al. 2010) using multiple covariate modelling 
(Marques & Buckland 2003). However, the specific structure 
and treatment of the collected data differed by design between 
the two surveys. For the ARGOS datasets, where effort was 
split between many farms, there were generally too few 
detections of a given species on a given farm to fit reliable 
farm-level distance models (Table 1). Therefore, detections 
for each species were pooled across all 36 farms for each 
survey (survey-level) and across all surveys (global-level), 
with detection functions fitted independently to the survey-
level and global-level pooled datasets (MacLeod et al. 2012b). 
Individual estimates for the 12 focus farms were then generated 
by post-stratifying the dataset by farm, i.e. the common 
detection function was applied to each farm-level dataset. 
This allowed the generation of estimates, using well-formed 
detection functions, even for farms with very few detections 
(Macleod et al. 2012b). There were sufficient data from the 
intensive survey, when detections were pooled across all visits, 
to fit farm-level detection functions (Table 1), although sample 
sizes were sometimes close to the lower recommended limit 
(Buckland et al. 2001; Weller 2009; Weller et al. 2012).

Estimate analysis
Differences in farm-level density estimates between survey 
types were explored using a mixed-effect general linear 
model (function lme in R 2.12.1; R Development Core Team 
2010), with farm identity as random effect to account for 
the repeated samples taken from farms, and using pairwise 
post hoc comparisons (Tukey’s HSD) to identify instances 
of significant difference. To control for environmental and 
observer differences in detectability between survey years 
that were not modelled in ARGOS Global, two averages of the 
survey-level ARGOS estimates were included in this analysis: 
an average of all three ARGOS survey years, and a 2-year 
average of ARGOS 1 and 2 only, to account for ARGOS 3 being 
performed later than the time frame covered by the intensive 
survey. A data series of estimates derived from the breeding 
season of the intensive survey only was also included to test 
for the influence of different sampling seasons.
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Table 1. Average sample size (number of detections) for the focal species, both available for modelling and attributable to 
each individual farm (12 in the intensive survey, 36 in the ARGOS surveys), in each survey.
__________________________________________________________________________________________________________________________________________________________________

Species	 Intensive		  ARGOS Global	 ARGOS 1		  ARGOS 2		  ARGOS 3
	 For 	 Per	 For	 Per	 For	 Per	 For	 Per	 For	 Per 
	 modelling	 farm	 modelling	 farm	 modelling	 farm	 modelling	 farm	 modelling	 farm
__________________________________________________________________________________________________________________________________________________________________

Skylark	 151	 151	 3774	 117.9	 1352	 36.5	 1878	 55.2	 559	 21.5
Blackbird	 95	 95	 1087	 34.0	 325	 8.8	 405	 11.9	 296	 11.4
Song thrush	 46	 46	 715	 22.3	 225	 6.1	 274	 8.1	 230	 8.8
Magpie	 71	 71	 1061	 33.2	 460	 12.4	 452	 13.3	 189	 7.3
__________________________________________________________________________________________________________________________________________________________________

Raw count analysis
For raw count data to be regarded as reliable indices of 
population size, the raw count estimate (i.e. the density estimate 
derived by dividing the unmodified number of detections by 
total surveyed area) should vary in proportion to the more 
accurate detectability-corrected estimate. To test this, I explored 
the relationship between raw count and distance-sampling 
estimates, using raw count data for each farm collected by 
the intensive survey. Ten artificial count sets per species 
were created by selecting all detections within an increasing 
maximum (cut-off) distance (25–250 m in 25 m increments), 
and density estimates computed by dividing this number by 
the area of inference (total transect lengths on farm × 2 × cut-
off distance). A general linear model was then fitted at each 
cut-off distance with the farm-level distance sampling density 
estimate as a dependent variable, and the raw count estimate 

as the predictor. A second model was fitted with ‘vegetation 
cover’ (average farm-level woody vegetation cover percentage 
in the raw count area), derived from GIS maps prepared by 
ARGOS, as an additional predictor.

Results

Model parameters
Figure 1 shows a comparison between the surveys of the 
averages (across all farms) of several parameters related to 
distance model fitting. Detection probability (p), describing 
the average (av.) probability of detecting any given bird on 
a transect, was broadly similar across surveys and species, 
tending towards values around 0.5 (Fig. 1a). Variance of 

Figure 1. Comparisons between surveys (intensive survey, ARGOS Global (pooled), and ARGOS 1–3) of averages of (a) farm-level 
detection probability and (b) farm-level coefficients of variation in detection probability, (c) density, and (d) encounter rate, for the four 
focal species. Bars show averages of farm-level estimates + 1 SE.
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detection probability, in the form of the coefficient of variation 
CV(p), was always largest in the intensive survey (av. 0.12 
across species); variance tended to be lowest in ARGOS 
Global (av. 0.03; Fig. 1b). The variance of the density estimate 
CV(D) and the encounter rate estimate CV(enc) (the number 
of detections over total transect length) showed similar 
characteristics. Both measures were always lowest in the 
intensive survey (av. CV(D) 0.18 & av. CV(enc) 0.14), higher 
in ARGOS Global (0.32 & 0.28), and higher again in ARGOS 
1–3 (0.41 & 0.42) (Fig. 1c,d). In contrast to CV(D) estimated at 
farm-level, this variance measure (unlike CV(enc)) was much 
lower in the ARGOS surveys (av. 0.06) when estimated across 
all farms, i.e. for globally pooled bird populations.

There were large differences between the surveys in both 
number of detections that the fitted models were based on (on 
average 17× and 7× as many for ARGOS Global and ARGOS 
1–3 vs intensive survey, respectively) and number of detections 
that these models were applied to on a farm level (on average 
1/2× and 1/7× as many for ARGOS Global and ARGOS 1–3 
vs intensive survey, respectively; Table 1). Overall, there was 
a clear inverse relationship between farm-level sample size 
and magnitude of estimate variances.

Distance-sampling density estimates
To assess the similarity of farm-level density estimates between 
surveys, values for each species were plotted against the same 
axis, with farm ordered by increasing density in the intensive 
survey (Fig. 2). Magpie densities were very similar across all 
series, with only a few outliers. Skylark estimates also agreed 
relatively closely, but ARGOS 2 values tended to be larger 
than those of the other series. There was greater discrepancy in 
the blackbird and thrush datasets. ARGOS 3 showed generally 
elevated values in thrushes, while all three annual ARGOS 
series were outliers for blackbirds. In both species, intensive-

Figure 2. Population density estimates per farm for each species (a–d) for the three sets of survey analyses (intensive, ARGOS Global, 
and ARGOS 1–3). Farms were ordered by increasing ‘intensive survey’ density estimate for each species.

survey estimates tended to be among the lowest or the lowest 
of the series, while the majority of ARGOS values were greater 
(sometimes by several hundred percent). Here, as in all species, 
ARGOS-Global estimates were closer to intensive-survey 
estimates than those for ARGOS 1–3 (but were still almost 
always higher), and tended to occupy a middle range between 
extremes in the individual years (as would be expected from 
a pooled dataset). There was no obvious dependence of the 
degree of discrepancy on position in the magnitude order of 
estimates (Fig. 2).

When ARGOS 1–3 were averaged across surveys for 
modelling in a GLM, no significant differences were found 
between this 3-year average and the global estimate in any 
species, and none were present between the intensive-survey 
and the breeding-season estimates. Intensive-survey estimates 
were not directly compared with ARGOS Global or the 3-year 
average, as these included the 2009/10 sampling season not 
covered by the former. However, a 2-year average of ARGOS 
1 and 2, excluding the third ARGOS survey year, showed no 
significant differences to any of the other sets.

Raw count estimates
Raw count density estimates for the four farm clusters in the 
intensive survey, and for all clusters together, were constructed 
from an increasing series of cut-off distances and the sum of 
all detections out to that distance (Fig. 3). For all species, raw 
count density estimates were consistently lower (by 62% on 
average) than distance-sampling density estimates based on 
the same data. For skylarks, blackbirds and thrushes, graphs 
of raw count estimates versus cut-off distance showed steady 
drop-offs with increasing distance, with variations depending 
on the individual cluster populations. Cluster 2 series for these 
three species, and estimates for skylark in general, displayed a 
bell shape indicative of avoidance behaviour in the surveyed 
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Figure 3. Raw count estimates per hectare for the four farm clusters and for all clusters by species, showing the dependence of estimated 
density on chosen truncation distance. Detections were selected from the ‘intensive survey’ database out to the chosen distance and 
divided by surveyed area. White circles denote results averaged over all farms, other data series are cluster-level.

animals (Buckland et al. 2001, 2004). In magpies, estimates 
remained at a nearly constant level or showed a very slight 
increase with increasing distance (Fig. 3).

Plotting the explained variance (R2) of the linear regression 
of raw count density on distance-sampling density versus cut-
off distance yielded similar results for skylarks and thrushes 
(Fig. 4); model fit was at its lowest (R2 ~ 0.8) at 25 m, rose 
to a maximum (>0.95) at 50 m (skylark) or 100 m (thrush), 
and kept to a similar level after that. In blackbirds, model fit 
declined sharply (to a minimum of 0.62) after a distance of 
50 m. In magpies, model fit was much lower (0.45–0.65) and 
more erratically related to cut-off distance (Fig. 4).

Average farm-level vegetation cover is a primary source of 
detectability differences in farmland bird monitoring (Weller 
et  al. 2012). Adding this parameter produced virtually no 
improvement to the skylark and thrush models. For magpies, 
the explained variance percentage was still lower than for the 
other species, but increased by 5–7.5% compared with the base 
model. For blackbirds, model fit improved strongly with the 
introduction of the vegetation cover covariate, to an average 
R2 of 0.86 and a distribution shape similar to that for skylarks 
and thrushes. A test for differences (two-sided t-test) in R2 at 
25 m, 50 m, and 200 m showed no significant differences at 
any of these levels for skylarks, thrushes and magpies, but 
significant differences for blackbirds at 50 m (p  =  0.051) 
and 200 m (p = 0.002). The best model fit was found at 50 m 
for skylarks (either model, R2 = 0.96) and blackbirds (with 
covariate vegetation cover, R2 = 0.93), at 100 m for thrushes 
(either model, R2 = 0.98), and at 175 m for magpies (with 
covariate vegetation cover, R2 = 0.66; Fig. 4).

Discussion
Sources of uncertainty in the survey results
The two survey types discussed here represent two different 
approaches to constructing an image of bird populations on 
sheep & beef farms. The ARGOS monitoring scheme is an 
ongoing longitudinal programme that apportions its effort 
across a large number of sites, tracking long-term population 
dynamics. The intensive survey delivered one-off population 
estimates of high resolution at a few sites. Because these designs 
put different constraints on modelling procedure, replication, 
and treatment of field parameters, imprecision and bias arising 
in each of these areas were addressed with differing degrees 
of success in the two surveys.

Precision
The primary indicators of precision in distance-sampling-based 
density estimates derive from model fit, and are readily available 
from program Distance. Model-based precision was good in 
both surveys (Fig. 1a,b). Average detection probability p was 
similar across series and in a range frequently encountered in 
distance models of bird populations (Diefenbach et al. 2003; 
Norvell et  al. 2003; Newson et  al. 2005, 2008; Buckland 
2006; Gale et  al. 2009). Precision of detectability CV(p) 
was better for the ARGOS monitoring scheme than for the 
intensive survey, and better for ARGOS Global than ARGOS 
1–3, showing the beneficial effects of increasing the sample 
size available for model fitting (which reduces variance in the 
detectability estimate).
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Figure 4. Variance explained (R2) by regressing the constructed raw count estimates for each farm at different cut-off distances, on the 
equivalent set of distance-sampling density estimates, by species in a linear regression. White circles denote data series where average 
woody vegetation cover in surveyed (raw count) area was added as a covariate, filled circles denote data series without this covariate.

The variances of both detection probability and encounter 
rate (number of detections over total transect length) form 
components of the variance of the final density estimate 
(Buckland et al. 2001). It is noticeable that high encounter rate 
variance in the ARGOS surveys resulted in low precision in D, 
while the components were more balanced in the intensive survey 
(Fig. 1c,d). Hence, while CV(D) in the latter was well within 
the range for useful estimation (Norvell et al. 2003; Newson 
et al. 2005, 2008; Buckland 2006; Somershoe et al. 2006), this 
was questionable for the individual ARGOS years in particular.

Large sample sizes for model fitting in the ARGOS scheme 
were generated by pooling across all farms for ARGOS 1–3, and 
further across the three surveys (repeat visits) for ARGOS Global. 
The intensive survey, with only a third the number of farms, 
achieved suitable sample sizes by pooling across a larger number 
of repeat visits only. These two methods were not equivalent in 
their effects on estimate precision because they differed in the 
distribution of monitoring effort to individual farms. The total 
length of transects walked per farm during the intensive survey 
was seven to eight times larger than for each of the ARGOS 
survey years (c. 36 000 m vs c. 4600 m per farm respectively) 
(Weller 2009; MacLeod et al. 2012b). This translates into strong 
differences in the likelihood of encountering a representative 
sample of each site’s bird population – unrealistically high or 
low density estimates would have resulted more frequently in 
ARGOS 1–3. A measure of this is variance in encounter rate, 
which was largest in the individual ARGOS years, reduced 
in the global model, and smallest in the intensive survey 
(Fig. 1d). Another effect of increased replication was better 
farm coverage, increasing the precision of farm-wide density  

estimates by sampling the area more completely. While encounter 
rate variance is incorporated into the variance of D and as such 
accounted for in the main precision criterion, a possible lack of 
area coverage must be realised by the user themselves. Even 
if transects are assigned at random, low replication might then 
inject a random bias into the farm-level estimate. The efficient 
yet thinly spread application of effort in the ARGOS scheme 
would be more susceptible to this than a design employing 
more repeat visits.

Bias
The existence of bias in the estimates is less readily assessed. 
In the absence of knowledge of true population densities, it 
cannot be said with certainty which survey design provides 
the more accurate results. However, comparisons between the 
different surveys’ results can be made with care to allow the 
identification of several possible sources of bias.

When ARGOS estimates differed from intensive-survey 
values, they were generally larger. This was true for the 
individual surveys (ARGOS 1–3) for each species, and for the 
globally modelled result for blackbirds and thrushes (Fig. 2). 
This was probably not an effect of the restriction of ARGOS 
farm visits to the summer months while intensive-survey 
visits sampled all times of the year. In the GLM, intensive-
survey results did not differ significantly from those of the 
same survey’s breeding season only – on the surveyed farms, 
population densities of the focal species tended to be on a par 
with or slightly below average during December–January, 
with variably both higher and lower numbers during the rest 
of the year (Weller 2009).
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Both survey methods are likely to have been affected 
by two main sources of bias: changes in conditions affecting 
detection probability over the course of the surveys, and 
model-based influences.

Changes in detectability
Differences in the bird detection and identification abilities of 
observers can have a pronounced influence on the number and 
attribution of detections (Sauer et al. 1994; Kendall et al. 1996; 
Buckland et al. 2001; Diefenbach et al. 2003; Jiguet 2009). 
Changes in field parameters that influence detectability were 
accommodated in both surveys by the inclusion of covariates 
denoting observers, vegetation cover, and other parameters 
(Marques & Buckland 2003; MacLeod et al. 2012b; Weller 
et al. 2012). While differences between individual observers 
can be mitigated by such methods, they cannot be accounted 
for entirely (additionally, any detection bias shared by all 
observers on a survey is not controlled by this approach). The 
ARGOS scheme is likely to be more prone to this bias than 
the intensive survey since it was possible to have c. 50% of 
transects performed by the same observer in the latter (Weller 
et al. 2012).

Modelling of detectability covariates is largely ineffective 
if detectability changes between individually analysed surveys. 
Survey-level results for ARGOS 1–3 must be expected to be 
conflated with inter-survey detectability changes (again mostly 
caused by changing observers) that were partly or wholly 
removed in ARGOS Global, which may account for some of 
the striking differences between these surveys and the global 
and intensive estimates (Fig. 2). However, the ARGOS 1–3 
average was not significantly different from ARGOS Global for 
any species; as the difference between these sets is individual 
versus global model fitting, this indicates that no very large 
improvement was made to the estimates from being able to 
accommodate inter-survey detectability variations.

It is notable that among the four focal species there was a 
marked split regarding the amount of inter-survey discrepancy, 
with blackbirds and thrushes showing many more differences 
than skylarks, and there being hardly any for magpies (Fig. 2). 
This directly parallels the order of detection and identification 
difficulty among these species, with magpies being highly 
conspicuous, vocal, and found in open areas, skylarks being 
slightly harder to locate in similar habitats due to their smaller 
size, and blackbirds and thrushes being frequently hidden in 
vegetation, with an added possibility of confusion between 
males of the two species by song, and females by sight (Weller 
2009). It is therefore apparent that the accuracy of density 
estimates also depends on the characteristics of the species 
monitored.

Pooling and model fitting
In the ARGOS monitoring scheme, models were fitted to a 
dataset pooled across all farms and then evaluated for individual 
farms, whereas in the intensive survey models were fitted 
at the farm level. This difference in treatment, born of the 
necessity to achieve satisfactory sample sizes, favoured the 
ARGOS scheme with a large dataset (Table 1) that enabled high 
precision in model fitting and hence estimation of detectability 
(Fig. 1b), while modelling for the intensive survey ran the risk 
of generating comparatively less appropriate models for the 
same farms because they were based on fewer total sightings. 
The process of model selection by parsimony criterion (AIC) 
employed in both surveys (MacLeod et al. 2012b; Weller et al. 
2012) would be more likely to result in a simplified model the 

smaller the size of the modelled dataset, and the chance for 
the effect of a covariate to be correctly assessed and included 
in the model would be reduced. This might have led to a 
bias away from true densities in the intensive-survey results. 
Its strength is difficult to estimate; a reduction of modelled 
dataset size to a third of Global size seems to have been of 
little consequence (no significant differences between ARGOS 
Global and 3-year ARGOS average in the GLM), but intensive 
survey sample sizes were on average only a sixth of this and 
sometimes close to the recommended minimum, making a 
detrimental effect probable.

Sample sizes were not large enough in the ARGOS surveys 
to allow the fitting of models at the farm level, which was 
possible for all farms in the intensive survey due to the higher 
number of surveys per farm. These models had the benefit of 
generating farm-specific detection functions and covariates. 
Considering the differences in the habitat characteristics and 
vegetation make-up of the surveyed farms, and that the amount 
of farm-level woody vegetation is the primary influence on 
detectability in these surveys (Weller et al. 2012), this can 
be expected to have resulted in some improvement of the 
estimates compared with those derived from global models. 
However, as both the global and 3-year average estimates 
encompass a season (2009/10) that was not covered by the 
intensive survey, it is not possible to empirically determine 
whether observed differences between these surveys are due 
to methodology or genuine population changes (e.g. the thrush 
data for ARGOS 3 (Fig. 2c) might indicate a general increase 
in thrush numbers in that year). A comparison of the 2-year 
average (which excludes this season) to the intensive estimates 
is more valid. The lack of significant differences between that 
set and the intensive survey for any species in the GLM is 
a good indication that bias due to modelling method was, if 
present, not very noticeable.

Bias in raw counts
In tracking changes in population densities over time, the 
relative differences between successive estimates are of 
primary interest. Relative indices are not considered to be 
unbiased; rather the only requirement is that bias between 
surveys remains constant. For such a purpose, raw counts 
might represent an efficient way to evaluate the data generated 
in surveys such as those discussed here (Johnson 2008). But 
even when treating such estimates as purely relative indices, 
they come hedged with specific vulnerabilities. An obvious 
characteristic of raw counts is one of diminishing calculated 
density with increasing cut-off distance (farthest distance from 
which detections are taken). Increases in cut-off distance, and 
hence area of inference, equal reductions in estimates as areas 
with progressively fewer detections are being added in (Fig. 3). 
To achieve comparability between surveys, the same cut-off 
distance for detections would have to be used across the board.

Yet it would still be unwarranted to assume that such indices 
are necessarily in some constant ratio to the true density, i.e. 
that all biases, known or unknown, remain constant for the 
duration and extent of the survey. An empirical test of the 
existence of such a ratio is to try to establish a systematic 
relationship between a set of raw count estimates and an 
equivalent set of more accurate densities. For three of the four 
focal species discussed here, a very good linear relationship 
could be established between the raw count estimates taken 
from the intensive-survey database and the equivalent farm-
level distance sampling estimates (Fig. 4). In skylarks and 
thrushes, and in blackbirds when including the additional 
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parameter of woody vegetation cover percentage, the variance 
explained by the predictor(s) never fell below 80% and was 
usually substantially higher. Beyond species-specific cut-off 
distances, the achievable fit (i.e. the suitability of a single 
equation to describe the ratio for all farms) remained roughly 
constant within 10% of the maximum-achieved R2 (Fig. 4). 
This demonstrates a basic suitability of count indices for 
these species as relative density indicators, but shows the 
same approach to be questionable for magpies. Information 
from such regressions can be used to choose an optimal cut-
off distance for index calculations, the main criterion being 
R2 maximisation. For skylarks, blackbirds and thrushes, this 
suggests a common cut-off distance of 50 m. If magpies are 
included, the cut-off distance is somewhat larger (175 m), with 
presumably negative results for overall detection reliability 
due to observers dividing their attention over a wider area.

The results for blackbirds provide an example of the 
influence of additional predictors on computed density, as a 
satisfactory ratio between estimates could only be achieved 
when adding a parameter for average woody vegetation cover 
into the equation (Fig. 4). This factor has been shown to be 
of great importance for farm-level detectability (Weller et al. 
2012) and thus might have been expected to be similarly 
important in thrushes, which for no clear reason was not the 
case. In magpies, models with the added predictor showed 
more consistency of fit than the base model, but the effect 
was irregular and fit was still lower than in the other species 
(R2 < 0.7). A possible explanation for this is that at the 
larger spatial scales that came into play with magpies due 
to conspicuousness at long distances (Weller et  al. 2012), 
topographic visual disturbances such as hills or depressions 
that were not recorded or modelled gained an impact. The 
need for additional detectability predictors should likely be 
taken to indicate that the species in question would be more 
efficiently monitored using methods like distance sampling 
that easily incorporate such parameters, as the main benefit 
of raw counts lies in their ease of implementation, a benefit 
which might quickly be nullified if additional data have to be 
collected and modelled.

Conclusion and recommendations
The trade-offs in the design of both the ARGOS monitoring 
scheme and the intensive survey resulted in differences in the 
precision of their density estimates and their susceptibility 
to bias. The ARGOS surveys generated less precise farm-
level density estimates than the intensive survey, which also 
benefitted from higher replication of visits and more complete 
farm coverage. Farm-specific models might have provided a 
benefit to accuracy in the intensive survey, but smaller datasets 
meant that appropriate models could be fitted less often than 
in the ARGOS scheme. Both designs suffered from hard-to-
quantify biases in detectability due to changing observers, 
which likely affected the ARGOS surveys somewhat more.

Overall there seems to be a higher vulnerability to bias 
in absolute farm-level estimates in the ARGOS surveys than 
in the intensive survey. This is not unexpected considering 
that approximately the same amount of effort (in transect 
length walked) was spent on 36 farms in the former as on 12 
farms in the latter. The design of the ARGOS scheme as a 
longitudinal study on many properties thus comes at a cost to 
both precision and accuracy that are incurred to a lesser extent 
in more focused designs. However, the long-term nature of 
ARGOS makes it possible to identify potential problems and 
address them in the ongoing monitoring by updating the survey 

design (although this would necessarily trade off against data 
comparability across years).

The ARGOS scheme would undoubtedly gain from a higher 
number of visits to each farm in a given year. Better temporal 
replication would yield a further increase in sample sizes and 
decrease encounter-rate variance, and thus improved density 
estimate precision. As the precision of the model estimates 
seems to be directly linked to sample sizes, this is probably 
the single most effective improvement that can be made to 
the quality of estimates. The increased spatial coverage would 
also enhance farm coverage and lead to a more representative 
sampling of farm-level populations. The single visit per survey 
in the current design took place during the main breeding 
season of most bird species present on the farms, which is 
often recommended for bird surveys if not all seasons can 
be sampled (Svensson 2000; Newson et al. 2008). Sampling 
events bracketing the breeding season might provide better 
information about the causes of detected population changes, 
while the establishment of long-term trends would be best 
served by identifying and sampling the time of year with the 
least variability in bird numbers, so programme priorities 
should be considered.

The ARGOS scheme is well suited to the purpose of 
tracking global population trends, as it can capitalise on the 
substantial pooled sample sizes gained from surveying a large 
number of sites. The property of pooling robustness (Buckland 
et al. 2001, 2004) inherent in distance sampling models ensures 
that even though individual farm datasets might differ in their 
precision and detectability characteristics, a pooled estimate 
will essentially be unbiased by such influences (Buckland 
et  al. 2004). However, as shown, employing survey-level 
models for the generation of annual estimates (as was done 
for ARGOS 1–3) is not without problems, as true variation 
in population densities and variation in detectability are 
conflated between surveys. This can be addressed by deriving 
survey-level estimates from a cross-survey pooled function (as 
generated for ARGOS Global). However, by applying a model 
to a survey that may be strongly influenced by circumstances 
only present in other surveys, such an approach runs the risk 
of introducing bias. Hence, it will likely be sounder to aim 
for annual estimates, while increasing survey effort and trying 
to control for or standardise as many detectability influences 
as possible.

The use of raw count data as relative population indices 
offers the possibility of more quickly attaining a dataset of 
sufficient size for trend estimation, by allowing simpler field 
methods and less effort spent on modelling. Of the four focal 
species, reasonable results using such an approach were 
obtained for skylarks and thrushes, and also for blackbirds 
after additional correction for habitat influences, while 
index estimates for magpies were unreliable (Fig. 4). These 
differences show a split in index reliability that seems counter-
intuitive when the characteristics of the species’ density 
estimates are considered (Fig. 2), and indicate the need 
for a similar comparative analysis to be carried out for any 
species intended to be monitored in this manner. This need for 
calibration estimates suggests that raw counts might be best 
employed as an extension for a well-established programme to 
add coverage for additional areas or times of year, rather than as 
a replacement. Regardless, their use would make it imperative 
to standardise all controllable detectability influences as far as 
possible, with observer identity being the main issue.

Observer error was a prominent problem in both surveys. 
Continuity of observers between surveys seems to be the most 
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desirable improvement in long-term designs, although likely 
difficult to implement. Among other benefits, the identification 
of genuine inter-survey population density changes would 
become easier if there was no possibility of changes in numbers 
across the board for a certain species being based on unrealised 
biases in detection or identification in a fresh group of observers. 
The results for the four focal species also demonstrate that the 
accuracy of density estimates will, among other things, depend 
on the degree of challenge that species pose to observers. 
It should be realised that a multi-species survey will likely 
deliver estimates of different quality for different species, 
and that this will not necessarily be apparent in measures 
of variance. The use of specialised pilot or complementary 
surveys of the same sites to identify such issues might be a 
sensible safeguard. Further surveys covering other species 
on the properties monitored by ARGOS are likely to become 
available in the future (e.g. Meadows et al. 2012) and will be 
useful for such purposes. The nature of ARGOS as a long-
term project with a large permanent group of participating 
farms offers the opportunity of carrying out survey designs of 
unusual scope, and the availability of supplementary results 
from other studies taking place within the same programme 
will likely prove to be of continuing benefit.
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