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Abstract: There are very few, if any, ecosystems that are not profoundly influenced by the activity of microbial 
communities. Microorganisms, encompassing domains Bacteria and Archaea as well as microscopic members 
of the Eukarya such as protozoa, yeasts and many other fungi, are tremendously abundant and contribute 
significantly to the major biogeochemical processes. In the last decade, technological advances in DNA 
sequencing have afforded ecologists the ability to study microbial communities at hitherto unseen resolution, 
with the capacity to address increasingly complex ecological questions. Here we review a selection of microbial 
ecology research being undertaken in New Zealand and Antarctica, from animal- and plant-hosted ecosystems, 
freshwater and marine habitats, and agricultural and geothermal environments. We have highlighted the broad 
range of high-quality and diverse microbial ecology research being conducted by New Zealand researchers and 
observe that much of this work underpins the greater biosecurity, ecosystem services, health and conservation 
efforts being undertaken in this country and globally. We conclude the review by offering some ideas for future 
directions in microbial ecology and, in particular, argue the importance of integrating microbiology with general 
ecological research.
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Introduction

‘This is truly the “age of bacteria” – as it was in the beginning, 
is now and ever shall be’. So said the noted paleontologist and 
evolutionary biologist, Stephen Jay Gould (Gould 1994), in 
recognition of the integral role of microorganisms in global 
ecology. Microorganisms, defined here in practical terms as 
any organism not visible to the naked eye, include all Archaea, 
Bacteria and microscopic members of the Eukarya such as 
unicellular algae, protozoa, and some fungi. Collectively, these 
organisms contain as much cellular carbon as all plants on earth 
(Whitman et al. 1998), and there are 100 million times more 
bacteria in our oceans (13 × 1028) than there are stars in the 
visible universe (Copley 2002; Anon. 2011). Microorganisms 
drive all the major biogeochemical cycles on earth and have 
profound influences on all other organisms (and indeed their 
habitats) due to their varied roles as pathogens, symbionts, 
biological nutrient transformers, decomposers, and primary 
food sources. There are practically no environments on earth 
that are free from the influence of microorganisms: from 
the deep biosphere to the troposphere (D’Hondt et al. 2004; 
DeLeon-Rodriguez et al. 2013), from the most heavily polluted 
to the most pristine environments (Gutierrez et al. 2013; 
Shtarkman et al. 2013), microorganisms play an important 
role in ecosystem function. 

The discipline of microbial ecology in New  Zealand 
(NZ) has a long and rich history. Indeed, the first significant 
international gathering of microbial ecologists (1st International 
Symposium in Microbial Ecology – ISME1) took place at the 
University of Otago, Dunedin in 1977 (Tiedje 1999). Activity 
in microbial ecology has continued in earnest locally, with 

greater publication outputs in recent years (Fig. 1) reflecting 
the increasing numbers of NZ researchers drawn to this field. 
The purpose of this review is to highlight ongoing microbiology 
research in NZ and Antarctica and its contribution to ecology.

Geothermal microbiology

New Zealand is blessed with a significant number of geothermal 
features arising from our position on the western boundary of the 
Pacific tectonic plate, within the ‘Ring of Fire’. Microorganisms, 
particularly bacteria and archaea, thrive in these environments 
despite the challenging conditions they encounter. Possibly 
the first thermophilic microorganism to be formally described 
from NZ was the moderate thermophile ‘Bacillus flavothermus’ 
(now Anoxybacillus flavithermus), which was cultivated from 
the Wairakei geothermal field in 1982 (Heinen et al. 1982). 
However, the microbiology of NZ geothermal systems has 
been actively investigated by researchers since the mid-1970s, 
primarily through the pioneering efforts of Hugh Morgan 
and Roy Daniel at the University of Waikato (Hickey et 
al. 1979; Daniel et al. 1982; Jansen et al. 1982). Although 
much of the early geothermal microbiology research focused 
on the description of thermostable enzymes (Bragger et al. 
1989; Patchett et al. 1991), isolation of novel thermophilic 
strains (Hudson et al. 1989a; Niederberger et al. 2006), and 
the application of lignocellulose-degrading thermophilic 
microorganisms to biofuel production (Reynolds et al. 1986; 
Bergquist et al. 1999), these studies significantly contributed 
to global ecological understanding of geothermal ecosystems.

We describe a number of examples from geothermal 
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FIGURE 1 

Figure 1. Peer-reviewed publications 
relating to environmental and microbial 
ecology studies by NZ researchers 
1976-2014. Data were generated via 
searching the database ‘Scopus’ for 
country affiliation in the following 
journals: Aquatic Microbial Ecology 
(AME), Environmental Microbiology 
Reports (EMR), Microbial Ecology 
(ME) ,  In te rna t iona l  Journa l 
of Systematic and Evolutionary 
Microbiology (IJSEM), Fungal 
Ecology (FE), FEMS Microbiology 
Ecology (FEMS ME), The ISME 
Journal (ISMEJ), Environmental 
Microbiology (EM) and Applied & 
Environmental Microbiology (AEM). 
Grey line represents a five-year 
floating average.

ecosystems to highlight the diversity and uniqueness of the 
microbial inhabitants and associated environments. The 
first example is from multiple hydrothermal vent sites at the 
Brothers volcano, a submarine volcano in the Kermadec Arc. 
Two studies (Stott et al. 2008b; Takai et al. 2009) indicated that 
phase separation of the hydrothermal gases had a significant 
influence on the selection and diversity of the microorganisms 
present. Stott et al. (2008b) found that more than one-third of 
the microbial phylotypes detected were from candidate phyla 
(for which no cultivated representatives existed) and only 1% 
of detected phylotypes could be identified down to genus or 
species level. In a second example, a similar level of phylotype 
uniqueness was described at Tramway Ridge on the flank 
of Mt Erebus at Ross Island in Antarctica (Soo et al. 2009). 
The composition of the resident microbial communities was 
strongly correlated with local physicochemical gradients, and 
included phylotypes distantly related to candidate phylum OP10 
and Chloroflexi, as well as several examples of undescribed 
phylotypes from the archaeal phylum Crenarchaeota (Soo et 
al. 2009; Herbold et al. 2014). A third example is White Island, 
a subaerial volcano off the Bay of Plenty coast, which contains 
extensive geothermal features characterised by strongly acidic 
sulphate springs and fumaroles. An acidic stream at White 
Island contained a diverse microbial community, including 
a moderately thermophilic strain of the algal rhodophyte, 
Cyanidium caldarium, capable of growth at a remarkable pH 
0.2 (Donachie et al. 2002).

The fourth example, Champagne Pool at Waiotapu, 
Waikato, is perhaps the most widely recognised geothermal 
feature in NZ, as well as the most extensively studied. 
The spring is particularly well known for its bright orange 
subaqueous sediments, white subaerial silica sinter rim and 
carbon dioxide (CO2) -saturated water body. It has elevated 
concentrations of arsenic and antimony, along with methane 
(CH4), hydrogen sulphide (H2S) and CO2, a moderately 
acidic pH of 5.5, and a temperature of 75°C, which makes it 
a challenging environment, even for microbial life. A number 
of studies have investigated the microbial communities within 

Champagne Pool, focusing in particular on the strategies 
employed to deal with the elevated concentrations of arsenic. 
For example, the bacterium Venenivibrio stagnispumantis, 
which was enriched and isolated from Champagne Pool, 
displayed no growth inhibition in the presence of 8 mM and 
20 mM arsenite and arsenate species, respectively (Hetzer et 
al. 2008). It is postulated that the resident microbial strains can 
restrict the toxic effect of arsenite species at Champagne Pool 
via the formation of methylated and/or thioarsenic anions (Hug 
et al. 2014). The microbial influence on the formation of white 
silica sinters on the periphery of Champagne Pool has also been 
reported (Mountain et al. 2003; Handley et al. 2005). Electron 
microscopic examination of these (and other geothermal) silica 
sinters showed that the internal sinter structures are made up 
of laminated, silica-encapsulated microbial cells. The vertical 
growth of these structures is a result of meniscus formation of 
silica-saturated spring water nucleated by resident microbial 
biofilms (Fig. 2). A genomic analysis of A. flavithermus further 
highlighted the mechanism for microbial contribution to silica 
nucleation and led to speculation about the contribution of 
thermophilic microorganisms to the formation of subaqueous 
and subaerial sinters (Saw et al. 2008) in geothermal systems 
such as Champagne Pool.

The isolation and characterisation of novel microbial 
strains plays an important role in piecing together the ecology 
of microbial communities and contributions to geochemical 
cycles. This is no different in extreme environments, where 
NZ researchers have played a substantial role in expanding our 
understanding of the metabolic capabilities and diversity of 
these systems. Novel isolates feature strongly in the literature, 
including several cases where type strains of novel phyla, 
classes and genera have been described. Of particular note was 
the isolation and description of Fervidobacterium nodosum 
(Patel et al. 1985). At the time of isolation, molecular techniques 
were not widely used and taxonomy was instead based 
primarily on physiological and morphological characteristics. 
As a result, the taxonomic placement of F. nodosum was 
uncertain and it now appears that Patel and colleagues were 
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 b a Figure 2. (a) Sampling a hot 
spring at Whakaari, White Island. 
(b) Scanning electron micrograph 
(SEM) image of a single silica sinter 
spicule and microbial cells from 
Champagne Pool, Waikato (scale 
bar = 10 µm). The silica sinters 
at the margin are a result of the 
encapsulation of microorganisms 
by silica deposition via wave and 
capillary action. (c) A mummified 
seal carcass at the base of Adams 
glacier, Meirs Valley, Antarctica. 
(d) Fungal mould on a crate in 
Cape Evans hut kitchen, Antarctica. 
Photos/images courtesy of Steve 
Sherburn (a), Kim Handley (b), 
Ian McDonald (c), and Roberta 
Farrell (d).

the first to isolate and describe a representative of the phylum 
Thermotogae. Similarly, Stott and colleagues isolated a 
number of new strains by enrichment from geothermal soils 
using oligotrophic media, including the first representative 
(Chthonomonas calidirosea) of candidate phylum OP10 
(renamed Armatimonadetes) (Stott et al. 2008a). Subsequent 
phenotypic and genomic characterisation revealed that this 
strain is an aerobic saccharolytic scavenger that occupies 
a very narrow ecological niche defined particularly by its 
obligate requirement for isoleucine supplementation and 
narrow pH growth range (Lee et al. 2011; Lee et al. 2014). 
Other extremophilic microorganisms from NZ ecosystems, 
notable because they either represented first descriptions (at 
the time of publication) of high-level taxonomic rankings 
or had unusual phenotypic characteristics compared to 
phylogenetically related microbes, include Pyrinomonas 
methylaliphatogenes (Crowe et al. 2014), Thermonema lapsum 
(Hudson et al. 1989b), Limisphaera ngatamarikiensis (Anders 
et al. 2015), Thermoflavifilum aggregans (Anders et al. 2014), 
and Spirochaeta thermophila (Aksenova et al. 1992).

The characterisation of a number of NZ microbial isolates 
has substantially changed our understanding of microbial 
metabolic capabilities and ecology. The alkaliphilic (alkaline-
loving) Caldalkalibacillus strain TA2.A1 (Peddie et al. 1999; 
Olsson et al. 2003; Kalamorz et al. 2011) was isolated from 
an alkaline thermal bore at Mount Te Aroha, Waikato. Before 
study of this microbe, it was considered thermodynamically 
impossible for microorganisms to grow in heated, highly 
alkaline environments because of the need to retain protons 
to drive endothermic reactions in proton-deficient alkaline 
conditions. Research has now demonstrated that strain TA2.
A1 is able to capture and utilise protons as coupling ions by 
linking the importation of sucrose to the sodium gradient, 
thus retaining the electrochemical gradient needed to drive a 
protonmotive force. Similarly, the isolation and description 

of the thermophilic and acidophilic methanotroph (CH4-
oxidising) Methylacidiphilum infernorum from Hell’s Gate/
Tikitere, Rotorua (Dunfield et al. 2007; Op den Camp et al. 
2009) challenged long-held paradigms of methanotrophy. The 
methanotrophic lifestyle is highly specialised and was thought 
to be restricted to neutral or slightly acidic environments 
and to two families of phylum Proteobacteria. This strain 
not only deviated from the neutrophilic methanotroph 
phenotype, but it also assimilated carbon non-conventionally 
via the Calvin-Benson Cycle, and was phylogenetically placed 
outside the traditional proteobacterial families, in the phylum 
Verrucomicrobia (Sharp et al. 2012).

Microbial ecology in the Antarctic

Procuring a living in Antarctica is difficult and requires 
specialised adaptations to deal with the extreme climatic 
and nutritional challenges. Environmental conditions such 
as desiccation, low nutrient availability, high UVB levels, 
variations in light regimes, and steep temperature gradients 
all restrict species richness (Cary et al. 2010). Yet remarkably, 
microbial communities appear to have adapted to, and thrive 
in, these conditions. Indeed, studies over the last 60 years 
have demonstrated that polar microbial communities are 
highly diverse and have unexpected prevalence in even 
the most extreme of Antarctic environments. We direct the 
reader interested in this subject to a recently published book 
that reviews terrestrial microbiology research in Antarctica, 
including sizeable contributions from NZ authors (Cowan 
2014).

The soils of the Antarctic Dry Valleys are among the more 
extreme global environments and were originally considered to 
be ‘sterile’ – devoid of all life (Horowitz et al. 1972). However, 
modern molecular detection techniques and next-generation 
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sequencing (NGS) have shown that these soils accommodate 
a wide diversity of microbial populations (Smith et al. 2006; 
Lee et al. 2012). These organisms have adapted to the high 
salinities, low moisture contents, and steep physicochemical 
gradients (soil temperature variations range from –60°C to 
27°C, with daily temperature changes sometimes in excess of 
20°C) that prevail in these environments (Cary et al. 2010). 
However, a lack of available energy inputs is probably the 
most challenging aspect for microbial survival. Exogenous 
inputs of organic matter are limited to phototrophs (algae, 
cyanobacteria, moss – there are no vascular plants), sediments 
from former waterways, and marine macroorganisms, such as 
seal and penguin, that contribute faeces (Banks et al. 2009) 
and carcasses (Tiao et al. 2012) (Fig. 2).

Despite such adversity, a wide diversity of bacteria has 
been identified in the Dry Valley environments, along with 
archaea and eukaryotic algae and fungi (Pointing et al. 2009). 
Most photoautotrophic biomass is concentrated in cryptic rocky 
refugia, where cyanobacteria and other taxa exploit marginal 
advantages in microenvironments on surfaces of exposed and 
porous rocks (Pointing et al. 2009). Cyanobacteria are a major 
source of C-fixation into the valley ecosystems, particularly 
on the peripheries of lakes and ponds and, to a lesser extent, 
soil (Wood et al. 2008a, b; Pointing et al. 2009; Cowan et al. 
2010; Niederberger et al. 2012). Soil communities dominated 
by members of at least 14 bacterial phyla have been identified, 
including commonly identified Bacteroidetes, Proteobacteria 
and Actinobacteria, as well as Deinococcus-Thermus, 
Chloroflexi and the candidate phyla OP10, OP11 and TM7 
(Lee et al. 2012). Fungal diversity is strikingly restricted, with 
only seven phylotypes associated with the Helicodendron 
and Zalerion genera detected (Rao et al. 2013). The archaeal 
diversity of the Dry Valleys has been found to be non-existent 
or limited to the low-temperature Crenarchaeota (Pointing et 
al. 2009; Ayton et al. 2010). 

Many of the Dry Valley research programmes have focused 
on determining the main environmental drivers of diversity 
within these soils. For example, organic carbon and soluble 
salts were found to be key drivers in the soils and rocky 
substrates in McKelvey Valley (Pointing et al. 2009). A broad 
inter-valley physicochemical and bacterial diversity survey of 
maritime valleys of the McMurdo Dry Valleys indicated that 
elevated salt content, lead, and low moisture content were the 
primary drivers defining bacterial (including cyanobacterial) 
community compositions (Lee et al. 2012). The latest research 
suggests that microbial communities within these valleys 
are highly localised, strongly defined by their individual 
physicochemical environments, and are likely to be endemic 
(Barrett et al. 2006; Cary et al. 2010; Lee et al. 2012; Yung et 
al. 2014). Metagenomic approaches to investigate functional 
diversity have revealed the presence in Dry Valley microbial 
communities of a unique pool of genes associated with organic 
hydrocarbon and lignin-like degradation (Chan et al. 2013).

An interesting component of microbiological research in 
Antarctica, spearheaded by NZ researchers, has centered on the 
need for low-cost and low-tech remediation of hydrocarbons 
derived from anthropogenic activities (Aislabie et al. 2000, 
2004, 2012; Baraniecki et al. 2002; Saul et al. 2005). 
Hydrocarbon spills and associated microbial communities 
at scientific research stations and drilling operations, such as 
the Scott and McMurdo Stations, and the surrounding Ross 
Island region, have been studied extensively (Aislabie et al. 
2000, 2004; Bej et al. 2000; Saul et al. 2005). Bioremediation 
strategies are limited to in situ technologies by practicalities 

associated with the remoteness of the location, the removal 
of contaminated soil, and Antarctic Treaty restrictions on the 
importation of foreign remediative organisms. As in the Dry 
Valleys, low and fluctuating temperatures and low nutrient 
availability (particularly N and P) appear to restrict microbial 
hydrocarbon degradation to the summer months. Laboratory 
tests demonstrated that rates of hydrocarbon mineralisation 
were significantly increased by amendments of N and P via 
fertiliser (Aislabie et al. 2000). Interestingly, while some 
genera of bacteria, such as Sphingomonas, Pseudomonas, 
Acinetobacter and Rhodococcus, as well as the fungus 
Phialophora, are enriched in contaminated soils, the overall 
microbial richness decreases (Aislabie et al. 2004; Saul et 
al. 2005).

An arguably more unusual aspect of microbial ecology 
research in the Antarctic is the study of fungi that inhabit 
historical dwellings on Ross Island (Duncan et al. 2006, 2008, 
2010; Farrell et al. 2011; Arenz et al. 2014). Huts used by 
Shackleton’s and Scott’s expeditions are of high historic value 
and are visited regularly by tourists, scientists and conservators 
(Duncan et al. 2010). However, the huts and their contents are 
vulnerable to fungal contamination and degradation, facilitated 
by the comparatively higher ambient temperatures in the huts, 
particularly in the summer months (Fig. 2). A diverse array of 
fungi, including Cadophora, Pseudodeurotium, Cladosporium, 
Geomyces, Hormonema, Rhodotorula, and Fusarium spp., 
inhabit the interiors and exteriors of these huts (Duncan et al. 
2008; Farrell et al. 2011). In particular, the cellulolytic soft rot 
fungus Cadophora was highly prevalent on the exterior of two 
historic huts, although its presence is considered endemic and 
not due to human contamination (Blanchette et al. 2004). The 
key drivers for fungal proliferation in Antarctica are soil carbon 
and nitrogen content. Hence, the introduction of exogenous 
C and N sources (e.g. huts) selects for cold-adapted and thus 
presumably indigenous fungal strains (Arenz et al. 2011; 
Farrell et al. 2011). Overlapping fungal species diversity is 
observed in both non-impacted Ross Island environs and in the 
historical huts, suggesting that indigenous fungal strains are 
the primary colonisers of the huts (Farrell et al. 2011). Further, 
fungal biomass did not vary significantly during seasons, 
suggesting visitors to the huts (primarily during summer) do 
not significantly contribute fungal contamination (Duncan et 
al. 2010). Partially due to these research efforts, conservation 
works have reduced fungal blooms and spores, which should 
restrict the degradation of the huts and associated artifacts.

Sea ice in the Antarctic is an important habitat and 
covers an area almost twice the size of Australia at its winter 
maximum (Maas et al. 2012). The microorganisms present 
in sea ice contribute significantly to primary and secondary 
production in the Southern Ocean. However, like other polar 
systems, it is under threat from changes in global climate, 
and it is unclear how the microorganisms inhabiting sea ice 
will respond to these changes. New Zealand researchers have 
been examining microbial community diversity and function 
within sea ice (Koh et al. 2010, 2011; Maas et al. 2012) to 
develop a baseline from which to monitor any future impacts. 
Recent research has shown that perturbations in temperature 
will not significantly affect the ability of phytoplankton to 
survive overwintering or provide inocula for blooms (Martin 
et al. 2012), but there is evidence of a lag in the response time 
of bacterial communities to rapid temperature, salinity and/or 
light changes (Martin et al. 2011).
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Figure 3. (a) Marine sponge 
Ecionemia  (Ancorina) alata 
from the New  Zealand coast. (b) 
Marine sponges often harbour 
dense and diverse communities 
of microorganisms, as seen in this 
transmission electron micrograph 
(scale bar = 2 µm). (c) The yeast 
Saccharomyces cerevisiae (scale 
bar = 2  µm) invariably dominates 
by the end of a wine ferment, 
even in wild ferments where no 
additional microorganisms are 
intentionally added. (d) Vineyard in 
west Auckland. Winemakers often 
employ spontaneous (wild) ferments 
in order to produce wine.  Photos/
images courtesy of Mike Taylor 
(a), Susanne Schmitt (b), and Mat 
Goddard (c, d).

Aquatic microbial ecology

With >15 000 km of coastline and the world’s sixth-largest 
exclusive economic zone, the islands of NZ are tightly linked 
to the state of our oceans. Given that a single millilitre of 
seawater contains 105–107 bacterial cells, with 10 times that 
many viruses, as well as a plethora of microalgae, archaea and 
protozoa, it is hardly surprising that marine microorganisms are 
vital contributors to global processes (Arrigo 2005). Among 
the most significant players in the global carbon cycle are 
the unicellular microalgae (phytoplankton), and much of the 
NZ-based research into marine planktonic microbiology has 
focussed on these taxa (Boyd et al. 2000, 2012). The role of 
phytoplankton and pelagic bacteria in the biogeochemical 
cycling of iron has been particularly well studied, due to the 
limiting nature of this trace metal in much of the world’s 
oceans, and a high-profile hypothesis from the 1980s that iron 
enrichment could enhance phytoplankton growth on a massive 
scale, ultimately leading to increased carbon sequestration in 
the ocean and amelioration of global climate change (Martin 
et al. 1988; Martin 1990; Boyd et al. 2010). Through their 
involvement in chemical, biological and large-scale iron 
fertilisation experiments, NZ-based researchers have played 
an integral role in elucidating the drivers of iron cycling in 
the Southern Ocean (Boyd et al. 2000; Tagliabue et al. 2014). 
The interplay between viruses and bacteria during a spring 
phytoplankton bloom within NZ waters has also been studied 
(Matteson et al. 2012), as have the microbial communities 
associated with sinking particles, or marine snow (LeCleir 
et al. 2014).

Any animal inhabiting the marine realm is immersed 
in a literal sea of microbes, including potential mutualists, 

pathogens and even sources of food. One marine taxon of 
particular note for its interactions with microorganisms is that 
of the filter-feeding sponges (phylum Porifera), which often 
harbour diverse and abundant communities of microbes that 
comprise up to 35% of total ‘sponge’ volume and contribute 
to many aspects of sponge biology, including nutrition and 
chemical defence (Taylor et al. 2007; Hentschel et al. 2012). 
The degree of host specificity (i.e. the extent to which microbial 
symbionts associate with only a few (= specialist) or many (= 
generalist) host species) was recently determined for a number 
of NZ sponges within the context of a large global study of 
sponge symbiont biogeography (Schmitt et al. 2012). The 
common NZ sponge Ecionemia (Ancorina) alata (Fig. 3), for 
example, contains dense microbial communities that are similar 
to those of other sponges at coarse phylogenetic levels (e.g. 
phylum), but exhibit considerable host specificity at finer (e.g. 
genus/species) levels (Kamke et al. 2010; Schmitt et al. 2012). 
Another NZ sponge, Mycale hentscheli, produces the potent 
anti-cancer agent peloruside A (West et al. 2000), and structural 
similarities between this compound and metabolites of known 
microbial origin have prompted considerable microbiological 
research into this sponge species (Webb et al. 2002; Anderson 
et al. 2010). Other marine animals to have received attention 
from microbiologists in NZ include echinoderms (Lawrence et 
al. 2010), the tetrodotoxin-producing sea slug Pleurobranchaea 
maculata (Wood et al. 2012; Chau et al. 2013), and herbivorous 
fishes, which utilise gut bacteria in the digestion of algae 
(Moran et al. 2005; Clements et al. 2007).

Early studies on the microbiology of NZ fresh waters 
focused on the detection of potentially pathogenic species, 
with human gut-associated bacteria such as Escherichia coli 
and other so-called ‘faecal coliforms’, as well as human-

 a  b

 c  d
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derived enteroviruses, often targeted as indicators of ecosystem 
contamination (Duncan et al. 1981; Lewis et al. 1986, 1992). 
More recently, such studies of one or a few target species have 
been extended to encompass entire microbial assemblages, 
with the development of novel proxies for aquatic ecosystem 
health (Lear et al. 2009, 2011; Washington et al. 2013). Methods 
to measure stream health based on microbial community 
composition and/or function compare favourably with more 
traditional indicators based on macroinvertebrate communities, 
responding differently to catchment conditions and offering 
a complementary, or even alternative, approach to those in 
current use (Lear et al. 2011; Dopheide et al. in press). By 
focusing on the relatively immobile microbes living within 
biofilms (multi-species assemblages found on virtually all 
aquatic surfaces), these approaches can provide an integrated 
measure of the recent environmental conditions at a specific 
site. The same principle has been applied to evaluate the effects 
of stormwater-derived metals (Ancion et al. 2014) and the 
ionophore monensin (Winkworth et al. 2014) on the health 
of receiving streams.

Engineered aquatic systems have also been the subject of 
microbiological scrutiny. Biological wastewater treatment, for 
example, represents one of the world’s largest biotechnology 
industries, with annual expenditure of $727 million in NZ alone 
(Anon. 2013b). The breakdown of municipal wastes, which are 
typically rich in carbon, nitrogen and phosphorus, is achieved by 
microbial action in a variety of treatment plant configurations. 
One system of increasing popularity, due to its high efficiency 
and small footprint, is the moving bed biofilm reactor (MBBR), 
exemplified by two full-scale treatment plants in the Wellington 
area. Recent molecular studies revealed distinct and predictable 
changes during the development of MBBR biofilms (Biswas 
et al. 2014a, b), with the emergence of a bacterial community 
that allows both aerobic and anaerobic nutrient breakdown to 
occur simultaneously. Microalgae are also used in wastewater 
treatment, with recent investigations into the effects of carbon 
addition (Sutherland et al. 2014b, 2015a), mixing frequency 
(Sutherland et al. 2014a), and light provision (Sutherland et 
al. 2015b) on microalgal productivity and nutrient removal. 
High-rate algal ponds have come under renewed scrutiny due 
to their potential for combining nutrient removal with biofuel 
production. Microbial fuel cell technology also allows energy 
generation, converting chemical energy to electrical energy 
via the microbial metabolism of various substrates including 
wastewater (Rabaey et al. 2005). Microbial fuels cells can 
be driven by the activities of a single microorganism or, as 
in the case of a recent NZ study, use a mixed community of 
microalgae and cyanobacteria (Commault et al. 2014).

New  Zealand’s aquatic systems have provided fertile 
testing grounds for evaluating ecological theory. Much of 
the existing theory surrounding, for example biogeographic 
patterns and latitudinal gradients in diversity, was developed 
for macroorganisms (plants and animals), but there remains a 
lack of clarity about the extent to which those principles apply 
to microbes (Barberan et al. 2014). A recent study of bacterial 
communities growing on biofilms in 244 streams across NZ 
found that catchment land use had the largest effect on richness 
and community structure, both latitude and geographic distance 
between samples had a significant effect, and elevation had 
less of an effect (Lear et al. 2013). Other research has used 
aquatic microcosms (Lear et al. 2013) and alpine ponds (Lear 
et al. 2014) to study the role of immigration and fine-scale 
biogeographic patterns, respectively, in determining microbial 
community structure.

Microbial communities associated with  
animal hosts

Animals provide a diverse array of habitats for microorganisms 
to colonise, and virtually all animals form symbiotic 
relationships with one or more microbial species (in this 
article we use the most liberal possible definition of the term 
‘symbiosis’, i.e. the living together of dissimilar organisms). 
There are compelling reasons to study host-associated microbes 
in NZ, whose fauna was described by Jared Diamond as ‘the 
nearest approach to life on another planet’ (Gibbs 2006, p. 7). 
New Zealand has evolved a distinct and highly unusual fauna 
and flora, with high levels of endemism among insects and 
other taxa (Gibbs 2006).

Many insects form close nutritional mutualisms with 
microbes which can, rather simplistically, be split into two 
main categories. Firstly, sap-sucking insects such as aphids 
and psyllids rely heavily on intracellular bacterial symbionts to 
provide the essential amino acids and/or vitamins that cannot 
be derived from their carbon-rich diet. While the related scale 
insects have received less attention from a microbiological 
perspective, recent work has provided insights into the diversity 
and evolution of bacterial symbionts in the scale insect family 
Coelostomidiidae (Dhami et al. 2012, 2013), whose members 
are mostly endemic to NZ. The coelostomidiid scales are of 
considerable ecological importance and provide a dramatic 
example of how microbial symbionts can influence the food 
web of an entire ecosystem. Scale insects feed exclusively 
on plant phloem sap, which is extremely rich in carbohydrate 
(sugar) but deficient in essential amino acids. Excess sugar 
is excreted by the immobile feeding stage as honeydew. In 
the beech forests of the Nelson Lakes, scale insects of the 
genus Ultracoelostoma excrete honeydew in quantities up 
to a staggering 4500 kg / hectare / year (Beggs et al. 2005), 
providing food for diverse species including microorganisms, 
invertebrates, reptiles and birds (Beggs et al. 2006). The 
survival of scale insects on their nutritionally unbalanced diet 
is directly due to the presence of bacterial symbionts, which 
essentially function as amino acid factories to provide the 
nitrogen necessary for the insect to synthesise, among other 
things, proteins and nucleic acids. Scale insects, aphids and 
other insects on a highly specialised diet typically contain only 
a low diversity (two to seven species) of bacterial symbionts.

A second, quite different type of nutritional symbiosis 
between insects and microorganisms is the high-diversity 
symbiosis exemplified by the termite gut. Termites contain 
hundreds of bacterial and archaeal species within their 
hindguts, with many also harbouring dense populations of 
flagellated protozoa (Brune et al. 2006). The protozoa, which 
play an integral role in the breakdown of recalcitrant dietary 
components such as lignin and cellulose, comprise up to half 
the fresh weight of the termite and enable the insect to thrive 
on a diet of wood or soil. New Zealand has three species of 
native termite which, while on the radar of the forestry industry, 
do not share the notoriety of their overseas counterparts as 
destroyers of wooden structures such as homes. Somewhat 
analogous to the situation for aphids and scale insects, the 
termite’s woody diet is rich in carbon but poorer in nitrogen, 
so bacterial symbionts capable of fixing atmospheric nitrogen 
(a useful trait which eukaryotes do not possess) are often key 
components of the termite microbiota (Brune et al. 2006). The 
diversity of nitrogen-fixing bacteria was determined for the 
NZ termite Stolotermes ruficeps by sequencing the gene which 
encodes for the nitrogenase enzyme, nifH (Reid et al. 2009), 
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and the authors suggested that wood-dwelling termites could 
represent a significant source of nitrogen in temperate forests. 
The ability to study microbial activity in situ by targeting such 
‘functional genes’ highlights a key weapon in the arsenal of 
today’s microbial ecologists, enabling an understanding of 
cellular metabolism even for the vast majority of bacteria that 
have thus far resisted cultivation in the laboratory.

The kākāpo (Strigops habroptilus) is an iconic NZ species; 
once among the most abundant of our native birds it was almost 
wiped out following the introduction of mammalian predators 
such as stoats. Thanks to intensive conservation efforts, kākāpo 
now number c. 125 individuals, a significant improvement 
over the c. 60 individuals existing some two decades ago. 
While much is known about kākāpo genetics, ecology and 
nutrition, until recently virtually nothing was known about 
the microbiology of these unique birds. This is surprising, 
since gut microbes are likely to contribute to kākāpo health by 
aiding in digestion and preventing establishment of pathogenic 
microorganisms. A recent study employed sequencing of the 
bacterial 16S rRNA genes to describe bacterial community 
composition along the kākāpo gastrointestinal tract (Waite et al. 
2012), while subsequent research has built upon these baseline 
data by examining the impacts of human interaction (e.g. hand-
rearing, antibiotic usage) on the bacterial communities resident 
within the kakapo gut (Waite et al. 2014). Such an approach 
will hopefully aid in kākāpo conservation and management 
and should be equally applicable for the conservation of any 
endangered species.

Nowhere is the contribution of symbiotic microorganisms 
to host nutrition more apparent than in the guts of commercially 
important ruminants such as cattle and sheep, which house in 
their rumen (fore-stomach) dense and diverse communities 
of bacteria, archaea, protozoa and fungi (Jeyanathan et al. 
2011; Kittelmann et al. 2013). Within the rumen, ingested 
food – typically cellulose-rich grass – is broken down by 
microbial fermentation into substances such as volatile fatty 
acids, which are more readily assimilated by the host animal. 
Methanogenic (CH4-generating) archaea within the rumen 
have gained particular notoriety due to the emission of CH4 
from farmed ruminants. Given the importance of ruminants 
to NZ’s agriculture sector, it is hardly surprising that intensive 
research efforts are underway in this country to investigate 
ways of reducing CH4 emissions. Any CH4 mitigation strategy 
should aim to target traits that are conserved across all rumen 
methanogens, ensuring that all methanogens are affected with 
no unaffected species left to fill the vacated niche (Attwood et 
al. 2011). Equally important is that other (non-CH4-producing) 
rumen microbes remain unaffected so that they maintain 
their normal roles in digestion. Clearly, development of such 
strategies requires detailed knowledge of the physiology 
and diversity of rumen methanogens, which is now being 
provided via the genome sequencing of Methanobrevibacter 
ruminantium and other rumen-derived methanogens (Leahy 
et al. 2010; Attwood et al. 2011). Potential CH4 mitigation 
strategies resulting from this work include inhibition of 
methanogen-specific enzymes or the development of an anti-
methanogen vaccine (Attwood et al. 2011; Buddle et al. 2011).

The microbial ecology of the human gut is a rapidly 
expanding field worldwide, driven by a new appreciation for 
the importance of gut microbes to human health, and facilitated 
by massive improvements in DNA sequencing technology (Qin 
et al. 2010). Research in this country has been spearheaded by 
Gerald Tannock at the University of Otago, who has worked 
for over 40 years on the ecology of gastrointestinal bacteria 

(Tannock et al. 1974; Roach et al. 1977). Much of this work 
has focused on the gut symbiont Lactobacillus reuteri, which 
exists in many vertebrates and, like several other members of 
this genus, is also used as a human probiotic. Comparative 
analyses of the genome sequences of different L. reuteri 
strains have shed light on the mechanisms responsible for 
the specialisation of these strains to different vertebrate hosts 
(Frese et al. 2011) while another recent study used a number of 
complementary approaches to examine the interactions of L. 
reuteri with another, related bacterium (Tannock et al. 2012). 
L. reuteri and L. johnsonii co-exist in the fore-stomach of mice 
(often used as an experimental proxy for the human gut), despite 
the niche exclusion principle predicting that this should not 
happen due to both species being able to utilise the two main 
food sources present – glucose and maltose. However, analysis 
of gene expression in these bacteria, coupled with in vivo and 
in vitro experimentation, revealed that resource partitioning 
was occurring, with one species growing more rapidly on 
glucose while the other preferentially used maltose (Tannock 
et al. 2012). Nutritional influences on the gut microbiota of 
juvenile rodents (Young et al. 2012) and humans (Thum et al. 
2012) have more generally been a subject of interest among NZ 
researchers, while other aspects of the human microbiome to 
have come under research attention include the oral microbiota 
(Rasiah et al. 2005; Filoche et al. 2010; Burton et al. 2011, 
2013) and bacteria of the sinus cavities (Biswas et al. 2015).

Microbial ecology of terrestrial ecosystems

Soils are of vital ecological importance due to the myriad 
ecosystem services that they provide (Aislabie et al. 2013). At 
the most basic level, soils provide the physical substrata for 
terrestrial animal (including human) life, as well as a growth 
medium for plants. They also buffer water flows, represent 
sites for decomposition and the liberation of nutrients, and 
play a key role in regulation of greenhouse gas emissions. 
Microbes living in the soil are intimately associated with all of 
these functions (Aislabie et al. 2013). Elucidating the role of 
microorganisms in soil is thus an important research objective 
and, unsurprisingly, soil microbiology is a dynamic field 
internationally (East 2013; Fierer et al. 2013). New Zealand 
itself has a productive history regarding the study of soil 
microbes including, but not limited to, investigations into 
carbon and nitrogen cycling (Singh et al. 2007; Di et al. 2009, 
2010; Das et al. 2012; Hamonts et al. 2013; Morales et al. 
2013, 2015), interactions between above- and below-ground 
communities (Wardle et al. 2004, 2005), influence of land 
management practices (Condron et al. 2012; Simpson et al. 
2012; Wakelin et al. 2012; Adair et al. 2013) and carriage of 
(potentially pathogenic) bacteria through soil (McLeod et al. 
2008; Aislabie et al. 2011).

Agriculture is the mainstay of the NZ economy, with 
dairy farming alone contributing a quarter of NZ’s export 
income. Timber, wine, kiwifruit and wool are among our other 
significant export products, with all relying to some degree 
on the provision of a healthy soil environment. Ensuring the 
sustainability of soils in an agriculture-intensive country such 
as NZ demands a sound understanding of the long-term effects 
of agricultural practices, including on microbial communities 
(Adair et al. 2013). Long-term field trials offer exemplary 
insights due to the experimenter’s ability to manipulate 
parameters in a controlled, replicated manner. Two such trials, 
at Lincoln University (Adair et al. 2013) and outside Hamilton 
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(Wardle et al. 1999), examined changes in soil communities 
relative to agricultural practices such as herbicide usage, 
mowing, mulching and addition of nitrogenous fertiliser. 
Nitrogen is critical to all life, and the dynamics of its addition 
to, and loss from, agricultural soils is a topic of considerable 
interest to microbiologists. Ammonia-derived fertilisers 
such as ammonium nitrate and urea are frequently added to 
pastoral soils to increase productivity, yet naturally-occurring 
nitrifying microorganisms can oxidise this ammonium to 
nitrite and subsequently nitrate. This is significant because 
nitrate is far more mobile within soils than ammonium, and 
is thus prone to leaching into groundwaters (Spalding et 
al. 1993; Aislabie et al. 2013). A nitrification inhibitor has 
been applied to NZ soils in an effort to minimise this nitrate 
leaching (Guo et al. 2014). In grazed grasslands, the majority 
of ingested nitrogen can be returned to the soil via urine from 
grazing livestock, with levels of nitrogen under a dairy cow 
urine patch reaching as high as 1000 kg per hectare (Di et al. 
2009). The importance of urine as a nitrogen input, potentially 
affecting microbial communities in soil, is reflected in the large 
numbers of publications on this topic from NZ researchers (e.g. 
Orwin et al. 2010; Bertram et al. 2012; Dai et al. 2013; Guo 
et al. 2014). A second major pathway for nitrogen loss from 
pastoral land relates to the release of nitrous oxide (N2O), a 
potent greenhouse gas with a global warming potential c. 300 
times that of CO2 (Solomon et al. 2007). Denitrification is the 
microbially mediated reduction of nitrate to nitrogen gas (N2). 
However, ‘incomplete denitrification’, as carried out by many 
denitrifiers, yields N2O as the final product, and this represents 
a substantial source of greenhouse gas emissions from NZ 
pastures (Aislabie et al. 2013; Saggar et al. 2013). The effects 
of N2O emissions from NZ soils have been researched for 
several decades and continue to receive considerable attention 
(Sherlock et al. 1983; Carran et al. 1995; de Klein et al. 2001; 
Hamonts et al. 2013; Kelliher et al. 2014).

Among the more aesthetically and gastronomically 
pleasing consequences of microbial activity is the production 
of wine. This country has a proud heritage of winemaking, 
with annual wine exports in excess of $NZD 1.2 billion (Anon. 
2013a). The yeast Saccharomyces cerevisiae has been used by 
humans to make alcoholic beverages for literally thousands 
of years (Cavalieri et al. 2003), with this organism frequently 
added to grape juice by winemakers in order to drive a ferment 
to completion (Fig. 3). Recent NZ research has provided novel 
insights into the biogeography (Gayevskiy et al. 2012) and 
modes of dispersal (Goddard et al. 2010; Palanca et al. 2013) 
of S. cerevisiae and other yeasts, as well as the mechanisms 
by which S. cerevisiae comes to dominate a ferment even 
when it is rare to begin with and is not specifically added 
(Goddard 2008). 

A less desirable outcome of microbial interactions with 
fruit involves the well-publicised outbreak of the kiwifruit 
canker pathogen, Pseudomonas syringae pv. actinidiae (Psa; 
Vanneste 2013). In a multi-institution collaboration that 
examined the genomes of more than 30 Psa isolates, a number 
of distinct clades were identified, and it was suggested that a 
diverse global source population exists, from which multiple 
transmission events have led to separate Psa outbreaks (McCann 
et al. 2013). Although control measures for Psa remain limited 
at best, genome analyses have identified candidate genes as 
potential targets for resistance breeding programs.

Molecular techniques have also provided valuable 
insights into the microbiology of the NZ grass grub Costelytra 
zealandica, with studies of both its natural microbial 

community (Zhang et al. 2008), and of bacterial strains that 
could act as biological control agents for this agricultural pest 
(Hurst et al. 2002; Hurst et al. 2007). The protein structure of 
a key insecticidal toxin produced by Yersinia entomophaga 
was recently described (Landsberg et al. 2011), leading to new 
insights into the mode of action of this and related toxins of 
bacterial origin (Busby et al. 2013).

Non-agricultural ecosystems have also been the subject 
of intense study among NZ’s microbial ecologists. Much of 
this work has explored the interactions between above- and 
below-ground ecosystem components, which were traditionally 
examined separately, but warrant being considered together 
due to the inextricable links between the two (Wardle et al. 
2004). Plants supply the organic carbon upon which soil 
decomposers depend, while the latter both break down dead 
plant matter and profoundly influence the cycling of nutrients 
within the soil (in turn affecting plant growth). Root-associated 
microorganisms can also have both positive and deleterious 
effects on the coupling between plant and decomposer 
communities (Wardle et al. 2004). Still more complexity is 
added by herbivores operating both above ground (foliar) and 
below ground (root), potentially affecting soil microorganisms 
and processes by a variety of mechanisms (Bardgett et al. 
2003). The enduring importance of plants to soil processes 
was demonstrated in a ‘removal experiment’ carried out in 
Te Urewera National Park, which compared soil properties 
(including nutrient composition and microbial community 
structure) in adjacent areas, some of which had been subjected 
to selective logging of rimu (Dacrydium cupressinum) some 
40 years earlier (Wardle et al. 2008). Even after this period 
of time the stumps of removed rimu trees elicited measurable 
effects on certain soil and microbial community characteristics. 
Concerns over such long-term ecological consequences are 
among the many worrying aspects surrounding the current 
spread of kauri dieback disease. This disease, caused by the 
oomycete (water mould) Phytophthora ‘taxon Agathis’, poses 
an existential threat to kauri (Agathis australis), an iconic NZ 
species. Effective management of kauri dieback requires an 
improved understanding of its etiology, with current research 
efforts including field surveys of potential kauri pathogens 
(Waipara et al. 2013) and glasshouse trials to establish 
pathogenicity (Horner et al. 2014).

With NZ holding the dubious distinction of being among 
the world’s most heavily invaded ecosystems (Allen et al. 
2006), it is fitting that the impact of invasive species on the 
composition and activities of microbial communities has 
received considerable research attention in this country. 
In a series of studies on nine NZ islands invaded by rats 
and a further nine rat-free islands, Fukami and colleagues 
showed that these introduced mammals, via their predation 
on seabirds, led to diminished soil fertility due to reduced 
nutrient deposition by birds (Fukami et al. 2006). While 
active microbial biomass was largely unaffected in the seabird 
study, subsequent experiments identified changes in fungal 
community structure, but not wood decomposition rates, on 
invaded vs rat-free islands (Peay et al. 2013). The presence of 
introduced rodents, as well as invasive wasps, also influenced 
how decomposer communities responded to the addition of 
honeydew in the aforementioned beech forest system at Nelson 
Lakes (Wardle et al. 2010). The influence of browsers such 
as deer, goats and possums has also been investigated within 
NZ forests, and while these did not seem to have a consistent 
effect on the activities of soil microbial communities (Wardle 
et al. 2001), they may facilitate the spread of invasive trees 
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and associated ectomycorrhizal fungi (Wood et al. 2015). The 
ecology of mycorrhizal associations has more generally been an 
area of considerable research activity within NZ (Powell 1976; 
Clayton et al. 1984; Johnston 2010; Orwin et al. 2011), with 
their role in shaping plant communities recently highlighted 
by Dickie and co-workers (Bever et al. 2010; Klironomos et 
al. 2011). It is estimated that as much as 57% of observed 
variation in plant community composition could be explained 
by mycorrhizal symbioses (Klironomos et al. 2011). Lack of 
mycorrhizal inoculum has been investigated as a potential 
constraining factor for the spread of iconic NZ tree species 
such as beech (Nothofagus spp.), kānuka (Kunzea spp.) and 
mānuka (Dickie et al. 2012a; Davis et al. 2013).

Ecological theory holds that assembly history, which 
describes the order and timing of species arrival, can have a 
profound effect on community structure. A series of elegant 
experiments in NZ with wood-decomposing fungi revealed 
the impact of assembly history on not only community 
composition, but also wider ecosystem functioning (Fukami 
et al. 2010). Such effects were just as substantial at the level 
of communities and ecosystems as they were at the level of 
individual species, as demonstrated by a field experiment in 
the South Island beech forest (Dickie et al. 2012b). Similarly 
important impacts were demonstrated using a laboratory-
based microbial model, whereby both the order and timing 
of bacterial introduction significantly influenced subsequent 
diversification (Fukami et al. 2007). The use of microbial model 
systems to address evolutionary and ecological questions, as 
exemplified by the research of Paul Rainey and co-workers 
(Rainey et al. 1998; Fukami et al. 2007; Beaumont et al. 2009), 
has represented an important step towards unifying microbial 
ecology and the ecology of ‘macro’ organisms (Jessup et al. 
2004; Prosser et al. 2007; Barberan et al. 2014).

Synthesis & future directions

In this review we have attempted to convey the vibrant nature 
of microbial ecology research conducted in NZ, both today and 
over the preceding decades. Dramatic improvements in DNA 
sequencing technologies, coupled with the unique attributes 
of our natural environment (e.g. geothermal ecosystems, 
endemic ‘host’ animals), make this a particularly exciting 
time for microbial ecology in NZ. The ‘democratisation’ of 
science enabled by reduced sequencing costs, coupled with 
the increasing ease of global collaboration, ensures that even 
modestly-funded laboratories in a small country such as NZ 
can continue to compete effectively on the international stage. 
While we are reluctant to be too prescriptive here, we share 
below some brief thoughts on what we believe are profitable 
areas for future research focus.

NGS technologies offer fantastic potential to obtain 
previously hidden insights into the ecology of microbial 
communities via the use of metatranscriptomic and 
metaproteomic approaches (Morales et al. 2011); these 
techniques define the gene expression and protein production, 
respectively, within communities and thus can be used to 
assess the immediate community responses to ecosystem 
variation. Future research efforts will no doubt increasingly 
lean on these ‘-omics’ techniques to gain new insights into 
the ecology of microbial communities across all the research 
areas described in this review. We highlight in particular the 
use of NGS in human/animal/plant microbiome ecology as an 
area that is currently receiving, and will continue to receive, 

intense global interest (Cho et al. 2012; McFall-Ngai et al. 
2013; Berg et al. 2014). Nevertheless, we equally caution that 
there is a risk that over-reliance on such approaches can lead 
to a loss of appreciation for – and subsequent lack of training 
in – ‘traditional’ techniques such as bacterial cultivation, and 
microbial physiological and chemotaxonomic characterisation. 
Undoubtedly a crucial role remains for experiments that seek 
to cultivate, or at least enrich for, the microbes in question, as 
such endeavours can yield invaluable information about novel 
metabolisms and provide important ground-truthing for omics-
derived hypotheses. A case in point is the recent description of 
persistence-level hydrogen utilisation by the obligate aerobe, 
Mycobacterium smegmatis (a non-pathogenic relative of M. 
tuberculosis). Genomic screening of M. smegmatis identified 
a number of hydrogenases (enzymes that can both oxidise and 
reduce molecular hydrogen), with unknown metabolic roles. 
Hydrogenases are generally considered highly sensitive to 
oxygen, so the maintenance of these enzymes by an aerobe was 
counter-intuitive. Subsequent physiological characterisation 
has not only demonstrated that mycobacterial strains can use 
sub-tropospheric concentrations of hydrogen for persistence 
(Greening et al. 2014a), but also that hydrogenase usage in 
soils is widespread and possibly a ubiquitous strategy employed 
by soil microorganisms (Greening et al. 2014b).

New Zealand is undeniably celebrated for its unique 
fauna and flora. But are our microorganisms equally unique? 
Does NZ simply harbour the same microorganisms as found 
overseas, or does there exist a NZ- (or perhaps Gondwana)-
specific microbiota? Biogeography is a major subdiscipline 
within contemporary microbial ecology (Hanson et al. 2012), 
and NZ researchers are very active in this area. For example, 
the ongoing 1000 Springs Project (www.1000springs.org.nz) 
coordinated by Stott, Cary and collaborators seeks to describe 
the microbial inhabitants of 1000 hot spring samples from 
NZ and determine whether these organisms mirror those in 
hot springs overseas (e.g. in USA, Japan, Iceland). In a very 
different context, Goddard and co-workers have traced the 
origins of wine yeasts isolated in NZ, in some cases back to 
oak barrels sourced from France (Goddard et al. 2010). Other 
strains appeared to have a more local origin. The bacterial 
symbionts of moss bugs (Hemiptera), Gondwanan relicts 
still found in Australia, South America, and NZ have also 
been studied and their phylogenies compared between these 
regions (Kuechler et al. 2013). Given the remarkable dispersal 
abilities of microorganisms, particularly via aeolian currents 
(Yamaguchi et al. 2012; Herbold et al. 2014), it is likely that 
the NZ microbiota will represent a mix of cosmopolitan and 
endemic species. Further research in this area is warranted.

Finally, considering the ubiquity of microbes and their 
influence on global biogeochemical cycles, there is little doubt 
that future ecological research will (need to) increasingly 
investigate the role and influence of microorganisms in climate 
change. Research here is already well underway, with groups 
investigating the mitigation of greenhouse gas production in 
ruminants (CH4) and in soils (CH4 and N2O), as well as the 
mycorrhizal influence on carbon capture above- and below-
ground. We have no doubt that the emphasis on microorganisms 
and their role in climate modulation will increase as global 
steps increase to combat climate change.

We recognise that many, if not most, readers of this journal 
are not specialist microbial ecologists, with their research 
focusing more on the activities of macro-organisms such as 
plants and animals. It thus seems fitting to conclude this review 
article by returning to the first sentence in the introduction, 
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‘This is truly the “age of bacteria” - as it was in the beginning, 
is now and ever shall be’, a quote from Stephen Jay Gould, 
which we believe encompasses all that we have written above; 
that is, microorganisms play an essential role in all ecosystems. 
We encourage investigators in all ecology-based research 
to consider the integration of microbial ecology into their 
ecological studies. Microbial ecology can benefit enormously 
from the integration of ecological theory that was developed 
largely from plant and animal ecology, while microorganisms 
are simply too important to omit when considering the ecology 
of NZ environments.
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