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Abstract: Globally, lowland forests have been depleted, fragmented, and degraded by land clearance and 
conversion by humans. Many remnants are also invaded by non-native plants and mammals, which can exacerbate 
biodiversity loss and impede ecosystem recovery. We examined the effects of non-native ground cover weeds 
and mammals on the seedling recruitment of native woody plants in lowland forests in northern New Zealand 
by following establishment over 2 years at sites experiencing different levels of weed cover, with or without 
supplemental seed addition, and with or without mammal exclusion. In general, native seedling recruitment 
was highest where seeds had been added and mammals excluded. Native seedling recruitment was negatively 
correlated with weed cover at sites invaded by Asparagus scandens or Tradescantia fluminensis, but only where 
seeds had been added. These results suggest that attempts to facilitate native seedling recruitment by sowing 
native seeds will be most successful where ground cover weeds and introduced mammals are low in abundance. 
Seedling recruitment was highest for Piper excelsum, Myrsine australis and Melicytus ramiflorus, so these 
species could be good options for lowland-forest restoration projects where ground cover weeds are present.

Keywords: ecosystem impacts; forest restoration; invasive alien species; invasive plants; pest animals; seedling 
recruitment; weed abundance 

Introduction

Lowland forests have been severely depleted, degraded and 
fragmented the world over, largely due to land clearance and 
conversion by humans (Turner & Corlett 1996; Jepson et al. 
2001). In New Zealand, 71% of indigenous forest is gone, 
much of it from the accessible lowlands (Ewers et al. 2006; 
Walker et al. 2006). Remaining forest remnants typically have 
a suite of non-native plants and mammals present (Jane 1983; 
Timmins & Williams 1991; Craig et al. 2000; King 2005), 
which can exacerbate biodiversity loss and impede ecosystem 
recovery (Didham et al. 2007; Hutchison 2008; Burns et al. 
2011). Lowland forest remnants are particularly susceptible 
to invasion by non-native plants for several reasons. First, 
they tend to be close to human settlements, and thus to source 
populations of non-native plant species that ‘escape’ from 
gardens (Timmins & Williams 1991; Sullivan et al. 2005). 
Additionally, they are usually subject to a high frequency of 
anthropogenic disturbance and have a high edge to interior 
area ratio relative to intact forest, both of which are associated 
with plant invasion (Brothers & Spingarn 1992; Alston & 
Richardson 2006; Wiser & Allen 2006). 

Invasive, non-native, shade-tolerant ground-cover plants 
(hereafter called ground cover weeds) can be particularly 
detrimental to native forest regeneration because they have the 
potential to alter forest structure, composition, and function 
(Wiser & Allen 2006). Many form dense vegetative mats that 
smother native seedlings and reduce native plant abundance 
and diversity (Schulz & Thelen 2000; Standish et al. 2001; 
Dlugosch 2005; McAlpine et al. 2015), potentially impeding 
native plant regeneration and succession. The extent to which 
weed impacts vary with weed abundance is not well understood. 

However, it seems likely that the thicker the vegetative mat of 
a ground cover weed, the less likely it is that native seedlings 
will recruit or survive. Several New Zealand studies have 
examined this question for the ground cover weed Tradescantia 
fluminensis, and suggested that the most severe impacts on 
native regeneration occur when tradescantia is beyond a certain 
threshold of biomass (Standish et al. 2001; McAlpine et al. 
2015). McAlpine et al. (2015) also demonstrated that two 
other species of ground cover weeds, Asparagus scandens 
and Plectranthus ciliatus, were associated with reduced native 
plant abundance and diversity, although a biomass threshold 
was less evident.

Where invaded forest remnants are isolated from other 
native habitat, seed dispersal limitation may further reduce 
native plant regeneration (McConkey et al. 2012). If so, manual 
introduction of seed may be an effective management strategy 
to increase native seedling establishment (Honnay et al. 2002). 
Some native plant species may be better equipped than others 
to regenerate in the presence of ground cover weeds. For 
example, large-seeded species tend to have higher survivorship 
during establishment than small-seeded species, particularly 
in the face of hazardous conditions, such as competition from 
other vegetation (Moles & Westoby 2004). On the other hand, 
large seeds may also be more susceptible to predation than 
small seeds, because bigger seeds are more conspicuous and 
offer greater food reward (Reader 1993; Gómez 2004). There 
are many biotic and abiotic factors that influence relative 
establishment success, so it is difficult to ascertain why any 
given species establishes more successfully than another. 
Nevertheless, it is useful for restoration purposes to determine 
which native plant species can successfully recruit from seed 
in the presence of common ground cover weeds. 
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Non-native mammals that consume seeds and plants can 
also reduce native seedling recruitment (Reaser et al. 2007; 
Traveset et al. 2009; Murphy et al. 2014). They can dramatically 
alter vegetation structure and prevent seedling regeneration, 
causing population declines – and even extinctions – of native 
plant species (Courchamp et al. 2003; Gurevitch & Padilla 
2004). Many studies have demonstrated an increase in native 
plant recruitment and/or growth following the exclusion or 
removal of introduced mammals, both in New Zealand (Allen 
et al. 1984, 1994; Wilson et al. 2003; Blick et al. 2008) and 
elsewhere (Weller et al. 2011; Cole et al. 2012). In New 
Zealand, non-native mammals such as brushtail possums 
(Trichosurus vulpecula), ship rats (Rattus rattus), red deer 
(Cervus elaphus scoticus), pigs (Sus scrofa), and goats (Capra 
hircus) are common in lowland forests (King 2005), and all 
can have negative impacts on the structure and diversity of the 
indigenous vegetation (Wilson et al. 2003; Spear & Chown 
2009; Grant-Hoffman et al. 2010; Krull et al. 2013). House 
mice (Mus musculus) are also common and, although their 
impacts on indigenous vegetation are unclear, they are known 
to consume indigenous flowers, fruits, seeds and seedlings in 
New Zealand (Murphy 1992; Ruscoe et al. 2004; Angel et al. 
2009). Non-native mammals can sometimes have beneficial 
effects on indigenous vegetation, such as dispersing indigenous 
seed (Williams et al. 2000), or consuming and thus reducing 
weed biomass (Kessler 2002). Impacts can also vary according 
to the size and density of the animal population, environmental 
factors, and characteristics of the local vegetation (Wardle 
1984; Allen et al. 2013). 

Despite being degraded, fragmented and invaded by 
non-native plants and mammals, New Zealand lowland forest 
remnants often have considerable conservation value. This 
value is partly because of their rarity (Ewers et al. 2006), but also 
because they tend to sustain far higher native biodiversity than 
the surrounding, typically highly modified, landscape (Burns 
et al. 2000). Better information about the impacts of invasive, 
non-native plants and mammals in these ecosystems will be 
useful to land managers seeking to conserve the biodiversity 
and improve the ecological integrity of these forest remnants. 
The objective of this study was to examine how native woody 
plant recruitment from seed in temperate New Zealand lowland 
forest remnants is affected by non-native ground cover weeds 
and mammals. 

Methods

Sites
Six lowland forest sites where the ground layer vegetation 
(approx. <500 mm height) was dominated by a single species of 
ground cover weed were identified in the Bay of Plenty area of 
the North Island, New Zealand (the same sites as in McAlpine 
et al. 2015). Two sites were found for each of three common 
ground cover weed species: Asparagus scandens (hereafter 
called climbing asparagus), Plectranthus ciliatus (hereafter 
called plectranthus), and Tradescantia fluminensis (hereafter 
called tradescantia). Sites were named as follows: asparagus 
1 (abbreviated to Asp1), asparagus 2 (Asp2), plectranthus 1 
(Ple1), plectranthus 2 (Ple2), tradescantia 1 (Tra1), tradescantia 
2 (Tra2). Across the six sites, mean annual temperature range is 
9.9‒18.7°C and mean annual precipitation is 1436 mm (NIWA 
CliFlo database: http://cliflo.niwa.co.nz). Mean elevation 
ranged from 55 to 270 m a.s.l., latitude ranged from 37°25' 
to 37°59' S, and longitude ranged from 175°43' to 176°02' E.  

All three weed species form dense, ground-covering mats of 
vegetation, and all can be associated with reduced indigenous 
abundance and species diversity in New Zealand lowland 
forests (McAlpine et al. 2015). Tradescantia is naturalised 
or invasive in at least 25 other countries around the world, 
and plectranthus and climbing asparagus are also invasive in 
Australia (Randall 2012). For further details of sites and weed 
species see McAlpine et al. (2015). All six sites were likely 
to have ship rats, brushtail possums and house mice present. 
Goats, red deer, pigs, hares (Lepus europaeus occidentalis) 
and rabbits (Oryctolagus cuniculus cuniculus) may have been 
present also. Additionally, livestock such as sheep and cattle 
may have breached fence boundaries occasionally. According 
to land managers, there had been very little, if any, pest animal 
control undertaken in recent years at any of the sites. 

At each site, thirty-two 50 × 50 cm plots stratified by 
percent of ground cover weed cover were established, eight 
for each of four cover classes: High (>95% cover), Medium 
(60–80% cover), Low (20–40% cover), and Zero (<1% cover). 
Plots were situated beneath closed canopy forest, a minimum 
of 3 m from any forest edge, where non-native plant species 
other than the dominant ground cover weed species were 
absent. Additionally, plots were situated on flat or gently 
sloping ground, where the ground vegetation was no more 
than 30 cm high (to allow for mammal exclusion cages, see 
below). Each plot was divided in half, with the dividing line 
placed perpendicular to any slope of the ground, giving a total 
of 384 subplots.

Light availability was expected to be similar across plots, 
because they were all situated beneath closed canopy forest. 
During a previous experiment at the same six sites (McAlpine 
et al. 2015), measurements of percent canopy openness were 
made in order to quantify light availability. These measurements 
were made in ‘high light’ areas in canopy gaps and on forest 
edges, and in ‘low light’ areas beneath the closed canopy 
forest. The subset of measurements made in the low light areas 
(not previously reported in this way) are deemed applicable 
to the current study, because plots from the two studies were 
in close proximity, under the same intact forest canopies. In 
the previous study (McAlpine et al. 2015), photographs of the 
forest canopy were taken from approximately 1 m above the 
middle of 32 plots per site using a Canon EOS 50D digital SLR 
camera and 4.5 mm Sigma EX DC hemispherical (fisheye) 
lens. Photographs were then digitally analysed using HemiView 
image processing software (Delta-T Devices, Cambridge, UK).

Native seed addition
Fruits of ten common native lowland forest species were 
collected from remnant lowland forest populations in the 
Bay of Plenty and Coromandel areas. These species differ in 
shade-tolerance, but all are capable of establishing in the shade 
(Grubb et al. 2013). Seeds of nine of the species were collected 
between November 2011 and February 2012, and seeds of a 
later fruiting species (Knightia excelsa) were collected in May 
2012 (Appendix 1). Fruits were collected from a minimum 
of five plants per species. Fruit pulp was manually removed, 
then seeds were spread out to dry at room temperature. The 
number of seeds sown per species varied due to seed size and 
availability at time of collection (Appendix 1). In April 2012, 
the seeds of all species but K. excelsa were sown directly onto 
the soil in one randomly allocated half of each plot (subplot). 
Knightia excelsa seeds were added in June 2012. Where the 
ground sloped, seeds were sown towards the uphill edge of the 
subplot, and a straight stick was pressed into the ground on the 
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downhill edge of the subplot to minimise seed displacement. 
Subplots were assessed in Jan 2012, before seed sowing, and 
2 years later, in April 2014. In each subplot, percent cover of 
ground cover weed was estimated, and seedlings of the sown 
species with stem originating inside the subplot were counted. 

Seeds of the native species were also sown in an unheated 
glasshouse to estimate seed viability. The number of seeds sown 
per species differed due to seed size and availability at time 
of collection (Appendix 1). Seeds were sown onto standard 
potting mix in 340 mm × 285 mm plastic seedling trays in 
April 2012 (and June 2012 for K. excelsa), four replicate trays 
per species. Four additional trays of plain potting mix were 
included in order to monitor seed contamination from within 
the glasshouse. Trays were randomly arranged within four areas 
(one tray per species per area) of the glasshouse, and were kept 
continuously moist with frequent watering. Seedlings were 
counted, then removed, weekly for 7 months between May 
and December 2012. Germination had apparently ceased at the 
time of the final count (the last three seedlings were counted 
in mid-November), although it is possible that viable, dormant 
seeds remained in the soil. However, the seedling trays were 
inadvertently discarded in mid-December 2012, so no further 
monitoring was possible. 

Mammal exclusion
In order to exclude mammals, closed-top cages were 
constructed from 19 mm aperture, stainless steel welded 
mesh, 60 cm square and 30 cm high. This mesh aperture was 
expected to exclude most mammals, excepting house mice and 
small rats (Tim Day, Xcluder® Pest Proof Fencing, unpubl. 
data). The caging treatment was randomly allocated to four of 
the eight plots within each of the four weed cover classes at 
each site (so 16 plots were caged and 16 plots were uncaged 
at each site). Following seed sowing, cages were placed over 
plots and pinned securely to the ground using a minimum of 
eight 13 cm galvanised steel pins per cage. Where necessary, 
a thin line of soil was slightly excavated around the plot edge 
so the cage edge fitted ground contours.

Statistical analyses
The total number of seedlings in subplots for all ten sown native 
species combined was modelled. Analyses were conducted 
in R v. 3.2.1 (R Core Team 2015) using the lme4 package 
(Bates et al. 2014). First, whether percentage weed cover had a 
significant effect on native seedling abundance prior to the start 
of the experiment was tested. Seedling abundance in subplots 
was modelled using a Poisson generalised linear mixed-effects 
model (GLMM), with weed cover as a fixed effect and plot as 
a random effect (to account for the split-plot design). Sown 
native seedling abundance after 2 years was then modelled 
with site, weed cover, seed sowing, caging and the interactions 
between weed cover and seed sowing, and caging and seed 
sowing as fixed effects, and plot as a random effect. To assist 
interpretation of model coefficients, percentage weed cover 
was divided by the root mean square so that all predictors 
were on a common scale (Gelman & Hill 2007).

Climbing asparagus cover was a significant predictor of 
native seedling abundance before the experiment (estimate = 
-0.009207, s.e. = 0.004614, z = -1.996, P = 0.046). Therefore, 
data from the climbing asparagus sites were analysed using a 
Gaussian linear mixed-effects model with change in seedling 
abundance (number of seedlings at time zero minus number 
of seedlings after 2 years) as the response variable. For 
climbing asparagus, the plot random effect had a variance of 

zero, so data were reanalysed using a linear model without 
the random effect. Weed cover had no effect on the number of 
native seedlings prior to the start of the experiment for both 
plectranthus (z = -1.37, P = 0.17) and tradescantia (z = -1.11, 
P = 0.27). Therefore, data for these species were analysed 
using Poisson GLMMs with native seedling abundance as 
the response variable. 

Plectranthus models that included weed cover failed to 
converge. An outlier subplot with 135 native seedlings after 2 
years appeared to be unduly influencing the results and causing 
poor model fit to the data. To overcome these issues, data from 
plectranthus sites were analysed with only site, seeds, cage and 
the interaction between seeds and cage as fixed effects, and 
the outlier was removed. For plectranthus and tradescantia, 
marginal (variance explained by fixed effects) and conditional 
(fixed and random effects) R2 (Nakagawa & Schielzeth 2013) 
values were calculated.

To test whether canopy openness differed significantly 
among the six sites, a beta regression model with variable 
precision was fitted using the betareg package (Cribari-Neto 
& Zeileis 2010). Beta regression is suitable for modelling 
continuous data restricted to values between zero and one, 
such as canopy openness (Korhonen et al. 2007).

Results

Climbing asparagus
At the climbing asparagus sites, seed sowing had a significant 
effect on native seedling abundance after 2 years (z = 3.04, 
P = 0.003; Fig. 1). There were more seedlings in subplots 
with seeds added (114 m-2, 0–632 m-2, mean and range) than 
without seeds added (30.63 m-2, 0–184 m-2). Caging to exclude 

Figure 1. Estimated effects of site, climbing asparagus cover 
(‘cover’), seed sowing (‘seeds’), and caging (‘caged’) on change 
in sown native seedling abundance in subplots after 2 years at 
sites invaded by climbing asparagus. Points represent the mean 
estimates for seedling abundance and error bars are 95% confidence 
intervals. Where the 95% confidence interval excludes zero, 
predictors differ significantly from the intercept model (uncaged 
+ no seed + weed percentage cover = 0 + site = Asp1).
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Figure 3. Estimated effects of site, tradescantia cover (‘cover’), 
seed sowing (‘seeds’), and caging (‘caged’) on sown native 
seedling abundance in subplots after 2 years at sites invaded by 
tradescantia. Points represent the mean estimates for seedling 
abundance and error bars are 95% confidence intervals. Where 
the 95% confidence interval excludes zero, predictors differ 
significantly from the intercept model (uncaged + no seed + weed 
percentage cover = 0 + site = Tra1).

invasive mammals also significantly increased native seedling 
abundance, but only when seeds were added (z = 2.21, P = 
0.03; caged + seeds = 147.75 m-2, 0–632 m-2; uncaged + seeds 
= 80.25 m-2, 0–464 m-2). Likewise, there was a significant 
negative correlation between climbing asparagus cover and 
native seedling abundance after 2 years, but only when seeds 
were added (z =-3.15, P = 0.002). There were significantly 
more native seedlings at site Asp2 than at site Asp1 after 2 
years (z = 4.08, P < 0.0001). The model explained 42% of the 
variance in the data (adjusted R2).

Plectranthus
At the plectranthus sites, caging increased native seedling 
abundance, but only when seeds were added (z = 10.6, P < 
0.0001; caged + seeds =127.75 m-2, 0–680 m-2; uncaged + seeds 
= 50.75 m-2, 0–248 m-2; Fig. 2). There were significantly more 
seedlings at site Ple1 than at site Ple2 (z = -2.94, P = 0.003). 
Fixed effects in the model explained 20% of the variance in 
the data, while fixed and random effects together explained 
76%. Hence, much of the variability in the data was due to 
differences among plots (the random effect).

Tradescantia
At the tradescantia sites, seed sowing and caging both had a 
significant effect on native seedling abundance after 2 years 
(seeds: z = 4.31, P < 0.0001; caging: z = 2.13, P = 0.03; Fig. 
3). There were more seedlings in subplots with seeds sown 
(46.75 m-2, 0–264 m-2) than without (21.25 m-2, 0–176 m-2), 
and in caged (47.25 m-2, 0–264 m-2) than uncaged plots (20.75 
m-2, 0–176 m-2). There was a significant negative correlation 
between tradescantia cover and native seedling abundance 
after 2 years, but only when seeds were added (z = -4.47, P 
<0.0001). Fixed effects in the model explained 18% of the 
variance in the data, while fixed and random effects together 
explained 63% of the variance. Again, much of the variability 
in the data was due to differences among plots.

Native seedling recruitment
The native species with the greatest increase in seedling 
numbers 2 years after seed sowing were P. excelsum, M. 
australis and M. ramiflorus (Fig. 4). For most species, seedling 
numbers were highest in subplots where seed had been added 
and mammals excluded (Fig. 4). Knightia excelsa had a high 
number of seedlings present before seed sowing but, overall, 
had a decrease in seedling numbers over the 2 years (Fig. 4). 
Overall, recruitment success was variable across species, and 
was not predicted by seed size (Fig. 4). 

Average percent seed germination of native species in 
the glasshouse ranged from 0% (H. arborea) to 67.5% (K. 
excelsa) (Appendix 1). The control trays of plain potting mix 
revealed no seed contamination. 

Canopy openness
The average (± SD) percent canopy openness under the intact 
forest canopy was: 14.3 ± 2.7 (Asp1), 12.7 ± 2.8 (Asp2), 
10.2 ± 2.2 (Ple1), 7.5 ± 1.1 (Ple2), 7.5 ± 1.1 (Tra1), 9.2 ± 1.5 
(Tra2). Canopy openness differed significantly among sites 
(z = -44.842, P<0.0001). Site explained 62% of the variance 
in canopy openness (pseudo R2).

Figure 2. Estimated effects of site, seed sowing (‘seeds’), and 
caging (‘caged’) on sown native seedling abundance in subplots 
after 2 years at sites invaded by plectranthus. Points represent 
the mean estimates for seedling abundance and error bars are 
95% confidence intervals. Where the 95% confidence interval 
excludes zero, predictors differ significantly from the intercept 
model (uncaged + no seed + site = Ple1).
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Figure 4. Total number of seedlings per m2 across all six sites (n=384 subplots), before, and 2 years after, seed sowing and caging 
treatments were applied. Species are ordered by seed size, from largest to smallest. BEItaw = Beilschmiedia tawa, VITluc = Vitex lucens, 
HEDarb = Hedycarya arborea, KNIexc = Knightia excelsa, COPgra = Coprosma grandifolia, MYRaus = Myrsine australis, PSEarb = 
Pseudopanax arboreus, PIPexc = Piper excelsum, MELram = Melicytus ramiflorus, GENlig = Geniostoma ligustrifolium. The number 
of seeds sowed per species varied, see Appendix 1.

Discussion

Sowing native seed can be an effective method of restoring 
native vegetation if rates of seed germination and seedling 
survival are high. In New Zealand, this method has been 
tested in lowland forest remnants (Overdyck et al. 2013), 
wetlands (Burge 2015), regenerating mānuka (Leptospermum 
scoparium) shrublands (Davis et al. 2013), and at sites invaded 
by woody weeds (Burrows et al. 2015; McAlpine et al. 2016). 
In all cases, sowing seed increased seedling numbers, indicating 
that native plant recruitment may be limited by seed and/or 
safe site availability (Duncan et al. 2009) in a wide range of 
ecosystem types in New Zealand. In the current study, seed 
addition generally resulted in higher numbers of seedlings, 
although recruitment was variable among species, and most 
species also recruited naturally from the seed rain or seed 
bank. Recruitment success did not appear to be related to 
seed size. Standish et al. (2001) also found seed size to be 
a poor predictor of native plant species abundance where 
tradescantia was present. Other factors, such as differences 
in shade tolerance (Standish 2002; Grubb et al. 2013), may 
be playing a role. For example, the lesser shade tolerance of 
K. excelsa could be a reason for its low seedling survival in 
the current study, particularly at the three sites where mean 
canopy openness was below 10%, the suggested threshold at 
which a species that benefits from canopy openness might be 
disadvantaged compared with a shade-tolerant species (Lusk 
et al. 2013, 2015).

Piper excelsum, M. australis and M. ramiflorus had the 
greatest increase in seedling establishment following seed 
sowing, so these species could be good options for lowland 
forest restoration projects where ground cover weeds are at 
low to moderate abundance. All three species occur naturally 
in lowland forests throughout much of New Zealand (Wardle 
1991), so are likely to be ecologically appropriate for restoration 
projects in many areas. However, in general, rates of seedling 
establishment in this study were low, although high mortality 
is typical of young seedlings (Fenner 1987). Potential causes 
of low germination and seedling establishment include the 
presence of plant pathogens, invertebrate seed/seedling 
consumers, and sub-optimal environmental conditions. 
Additionally, seeds can lose viability during storage, which, in 
the current study, was almost 5 months for some species. This 
situation was not ideal and, in general, best practice would be 
to sow seeds as soon as possible after collection, particularly 
for species with recalcitrant seeds, such as B. tawa (Knowles 
& Beveridge 1982; Burrows 1989). Glasshouse germination 
results may have underestimated seed viability of species 
that have dormant or quiescent seeds, given that germination 
was only monitored for 7 months (Fountain & Outred 1991; 
Burrows 1997).

Non-native mammals can have significant negative 
impacts on native vegetation in New Zealand (Campbell & 
Rudge 1984; Wardle et al. 2001; Wilson et al. 2003). Results 
from the current study concur; excluding non-native mammals 
generally resulted in higher numbers of native seedlings. Four 
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other New Zealand studies where mammals were excluded 
using similar mesh cages have yielded similar results. Wotton 
and Kelly (2011) demonstrated significantly higher native 
seed germination and seedling survival when mammals were 
excluded. Overdyck et al. (2013) showed that seeds and fruits 
accessible to mammalian seed predators suffered significantly 
greater loss (58%) than those protected by cages (4%). 
Burge (2015) found that protecting seeds and seedlings from 
predation and herbivory increased native seedling recruitment 
by more than 100%. Wilson et al. (2003) monitored natural 
seedling establishment over 2 years, and reported 3.6 times 
more seedlings at one site where possums and rats had been 
excluded. In the current study, rats, possums and red deer are 
likely to be the main drivers of these effects because they are 
the species most likely to be present at all sites (Fraser et al. 
2000; King 2005), and all have been shown to significantly 
reduce native seedling numbers through herbivory (Wilson et 
al. 2003; Husheer et al. 2006). Pigs and goats could also be 
reducing native plant cover, species richness and regeneration 
(Atkinson 1964; Campbell & Donlan 2005; Krull et al. 2013), 
and seed predation by rats and mice could be reducing seedling 
establishment (Murphy 1992; Moles & Drake 1999; Ruscoe et 
al. 2005; Overdyck et al. 2013). It is also possible that mammal-
exclusion cages have other positive impacts on native seedling 
survival, for example by providing additional shade or wind 
protection. Despite this growing body of knowledge on the 
effects of non-native mammals on native seedling establishment 
and survival in New Zealand, it remains uncertain how these 
impacts ultimately affect the structure and composition of 
native vegetation. Interestingly, a recent New Zealand study 
showed reduced establishment and growth of seedlings of 
some native woody plant species, in part because the biomass 
of grasses and sedges was greater (and may have reduced 
establishment by woody plants) when possums were excluded 
(Bellingham et al. 2016).  If mammalian herbivores reduce 
biomass of climbing asparagus, plectranthus or tradescantia, 
the same may apply.

Results from the current study align with other evidence 
demonstrating that ground cover weeds can reduce native plant 
recruitment in New Zealand lowland forests, particularly when 
the weeds are abundant (Standish et al. 2001; McAlpine et al. 
2015). Thus, removing or reducing the abundance of ground 
cover weeds may be conducive to native plant regeneration 
at sites where native seeds are present and environmental 
conditions are suitable for establishment. Additionally, 
controlling ground cover weeds in canopy gaps may also 
promote native plant recruitment, given that ground cover 
weed abundance can be positively correlated with light 
availability (Kelly & Skipworth 1984; Standish et al. 2001; 
McAlpine et al. 2015). It is also conceivable that management 
effort given to increasing sub-canopy shade, for example by 
planting fast-growing, broad-leaved native species, could 
reduce ground cover weed abundance. This has previously 
been suggested as a method of suppressing tradescantia, and 
tested successfully using artificial shade cloth (Standish et al. 
2001; Standish 2002). It remains to be seen whether shade from 
native plants introduced by sowing seed or planting seedlings 
could eventually reduce ground cover weed abundance. 

In summary, this study has demonstrated that both ground 
cover weeds and non-native mammals can have negative 
effects on native plant regeneration in lowland forests. Thus, 
the management of one without regard for the other may 
have no net benefit for native plant regeneration. Attempts 
to facilitate native seedling recruitment by sowing seeds are 

likely to be most successful where ground cover weeds and 
introduced mammals are low in abundance. 
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Appendix 1. Seed weights, numbers of seeds sown in the field and glasshouse, and percent germination in the glasshouse 
for native plant species used.

	 Field	 Glasshouse
__________________________________________________________________________________________________________________________________________________________________

	 Mean ± SE seed	 No. seeds sown	 Total no. seeds	 No. seeds sown	 Mean ± SE 
	 weight (mg)	 per subplot	 sown	 per tray	 germination (%)
__________________________________________________________________________________________________________________________________________________________________

Beilschmiedia tawa	 1375.9 ± 40.1a	 2	 384	 28	 4.5 ± 3.4
Vitex lucens	 370.7 ± 10.8a	 10	 1920	 92	 30.7 ± 3.2
Hedycarya arborea	 243.4 ± 5.9a	 10	 1920	 100	 0
Knightia excelsa	 28.6 ± 0.7a	 10	 1920	 50	 67.5 ± 5.3
Coprosma grandifolia	 14.7 ± 0.4a	 25	 4800	 50	 17.5 ± 2.5
Myrsine australis	 8.7 ± 0.1b	 40	 7680	 100	 3.3 ± 1.0
Pseudopanax arboreus	 4.9 ± 0.2c	 50	 9600	 100	 1.0 ± 0.4
Piper excelsum	 2.1 ± 0.02c	 100	 19 200	 100	 39.3 ± 9.6
Melicytus ramiflorus	 1.2 ± 0.02c	 100	 19 200	 100	 41.5 ± 3.9
Geniostoma ligustrifolium	 0.5 ± 0.02d	 100	 19 200	 100	 1.3 ± 1.0
__________________________________________________________________________________________________________________________________________________________________

Averages calculated from a100 seeds weighed individually, b27 lots of 40 seeds, c10 lots of 100 seeds, d20 lots of 100 seeds


