
1Bombaci, Pejchar: Acoustic population monitoring of forest birds

Using paired acoustic sampling to enhance population monitoring of New Zealand’s 
forest birds

Sara P. Bombaci*        and Liba Pejchar
Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
*Author for correspondence (Email: sara.bombaci@colostate.edu)

Published online: 23 November 2018

New Zealand Journal of Ecology (2019) 43(1): 3356 © 2018 New Zealand Ecological Society. 

DOI: 10.20417/nzjecol.43.9

RESEARCH

Abstract: Large-scale bird monitoring can provide valuable insights about drivers of population change across 
different spatial and temporal scales. Yet, challenging terrain and survey costs hinder the collection of data 
needed to estimate absolute abundance or population densities for New Zealand’s forest birds. Acoustic sampling 
is being used more frequently to increase efficiency in avian monitoring and paired sampling facilitates robust 
density estimation from acoustic data. In paired sampling, point counts are conducted simultaneously by human 
observers and autonomous recording units (ARUs) to allow estimation of statistical offsets that correct biases in 
ARU data relative to human observers. These offsets can then be used to calibrate count data collected only by 
ARUs in a larger sampling scheme. However, the effectiveness of paired sampling has not yet been evaluated 
in New Zealand. We assessed bias in bird counts from ARUs relative to traditional point counts and evaluated 
whether paired sampling reduced ARU bias, when present, at 280 count stations in six indigenous forest patches 
on the North Island from January to April 2017. For 13 forest bird species, we estimated δ, a statistical offset that 
represents the ratio of the effective detection radius (EDR) of the ARU data to human count data and compared 
bias in density estimates from ARUs relative to human observers between models with and without δ offsets. 
We found that δ estimates of EDR ratios were near 1.0 and 95% confidence intervals around δ overlapped 1.0 
for nine of 13 species. Furthermore, densities produced by ARU counts were unbiased relative to human point 
counts for nine  of 13 species. When models included δ offsets, ARU density estimate bias was removed for 
all species. Thus, paired acoustic sampling offers a promising strategy for increasing the efficiency, and spatial 
and temporal coverage of bird population monitoring across New Zealand.

Keywords: 5-minute bird counts, abundance estimation, acoustic survey bias, ARU, audio monitoring, autonomous 
recording unit, avian monitoring, bioacoustics, point counts, population density estimation

Introduction

Sustained monitoring is critical for evaluating how animal 
populations respond to land use change and conservation 
interventions, especially when monitoring is designed to 
address specific a priori hypotheses (Bart 2005; Nichols 
& Williams 2006; MacLeod et al. 2012). In New Zealand, 
management actions frequently focus on reducing the 
abundance of invasive mammals (e.g. ship rats Rattus rattus, 
Norway rats R. norvegicus, mustelids Mustela spp., possums 
Trichosurus vulpecula; Parkes & Murphy 2003; Towns et al. 
2013), to protect native bird populations, e.g. the Department of 
Conservation ‘Battle for our Birds’ campaign (Elliott & Kemp 
2016). These actions are meant, in part, to reduce mammal 
predation on native forest birds and browsing-related impacts 
to their habitats (Towns et al. 2013). 

Robust monitoring is necessary to evaluate whether these 
and other management actions are meeting conservation 
objectives (MacLeod et al. 2012). Although a multi-species 
national monitoring program is underway (see www.doc.
govt.nz/our-work/monitoring-and-reporting-system), such 

programs require intensive data collection that could benefit 
from strategies that increase the efficiency or cost-effectiveness 
of population monitoring. Citizen science programs (e.g. New 
Zealand eBird, iNaturalist NZ) provide low-cost monitoring 
data useful for addressing questions about species distributions 
and occurrence patterns (Scofield et al. 2012), and robust 
methods have been developed that allow researchers to model 
changes in species abundance over time from citizen science 
list data (Szabo et al. 2010). However, these methods do not 
provide measures of absolute abundance and are considered a 
complementary method to more intensive monitoring programs 
(Szabo et al. 2010). Also, these methods do not explicitly 
account for imperfect detection, and in some cases, indices 
that do not account for detection bias can generate spurious 
conclusions that may lead to incorrect management actions 
being taken (Greene & Pryde 2012; Iknayan et al. 2014). 
Further, citizen science monitoring programmes often over-
sample accessible areas near urban centres and under-sample 
remote areas with challenging terrain, which limits the value 
of these data for assessing nation-wide population trends 
(MacLeod et al. 2012). 
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Distance sampling (Buckland et al. 2001) and time removal 
sampling (Farnsworth et al. 2002; Sólymos et al. 2013) methods 
are frequently used to estimate bird abundance/population 
density and monitor changes in bird populations, but these 
methods require observers to collect additional information 
during bird counts (i.e. distance between the observer and 
the detected bird or time-of-detection) that require extra 
training for observers to meet analytical assumptions. Distance 
sampling analysis also demands numerous observations per 
species to allow proper estimation of the detection function 
(Buckland et al. 2001). The need for reliable distance and/
or time-of-detection measurements and abundant data can 
limit the usefulness of these techniques for monitoring bird 
populations in New Zealand, where the terrain is often steep, 
thickly vegetated, and difficult to traverse (MacLeod et al. 
2012; Allen et al. 2013). Thus, sending trained observers to 
multiple points distributed across the landscape, or to the same 
points over repeated visits, to acquire sufficient survey data for 
distance or removal sampling may be costly or impractical. 
Furthermore, some bird species that are present, but difficult 
to detect using standard point counts, e.g. nocturnal residents, 
human-sensitive species and migrants, may not be recorded by 
transient observers (Steer 2010; Van Wilgenburg et al. 2017). 
Alternative population monitoring solutions that address 
these challenges are needed to facilitate a robust population 
monitoring program in New Zealand. 

A potential tool for increasing the efficiency, and spatial 
and temporal coverage of bird population monitoring efforts 
across New Zealand is the use of autonomous recording 
units, or ARUs. ARUs have been used in New Zealand and 
elsewhere to supplement data collected by human observers 
with acoustic data (Haselmayer & Quinn 2000; Hobson et 
al. 2002; Francis et al. 2009; Steer 2010; Klingbeil & Willig 
2015; Van Wilgenburg et al. 2017). ARUs may provide a cost-
effective population monitoring solution because they only 
require humans to visit a location once to deploy the ARU 
and once to retrieve it (Yip et al. 2017). However, transcribing 
the audio recordings is time consuming, which may reduce 
the cost-effectiveness of using ARUs, and these extra costs 
should be considered. The ARU can be programmed to collect 
repeated surveys following almost any protocol, and thus can 
increase the quantity of data collected in an area substantially 
with relatively little effort (Steer 2010; Van Wilgenburg et al. 
2017). Acoustic recording files also provide a permanent record 
that can be verified by multiple experts, facilitating accurate 
and reproducible research (Steer 2010). Finally, software is 
available to aid in bird call identification (e.g. Raven Pro, 
Bioacoustics Research Program 2014) and advances in machine 
learning will soon enable accurate automated identification 
of bird calls from audio recordings (Brandes 2008; Acevedo 
et al. 2009; Digby et al. 2013; Stowell & Plumbley 2014).

Most detections of forest birds in point count surveys 
are auditory (Haselmayer & Quinn 2000; Hutto & Stutzman 
2009), so it is reasonable to assume that the data collected using 
ARU- and human-based surveys would be comparable in these 
habitats. In fact, point count data collected by ARUs and human 
observers has frequently produced comparable abundance and 
diversity estimates (Hobson et al. 2002; Blumstein et al. 2011; 
Venier et al. 2012; Klingbeil & Willig 2015). However, these 
two approaches do not always produce similar outcomes (Hutto 
& Stutzman 2009; Venier et al. 2012), and the efficacy of ARUs 
has rarely been evaluated for New Zealand birds (MacLeod et 
al. 2012; but see Steer 2010; Digby et al. 2013). A potential 
shortcoming of using ARUs is that biases in detection of song 

cues between human observers and ARU-based point counts 
may occur due to differences in the detection radius for each 
method, which could lead to biased abundance estimates if 
not corrected for (Van Wilgenburg et al. 2017). 

A novel study design and analytical approach was 
recently developed to allow ARU data to be calibrated with 
human point count data to estimate bird densities/abundance 
from both types of surveys, while accounting for imperfect 
detection and species availability (Van Wilgenburg et al. 2017). 
By conducting synchronous point count and ARU surveys, 
researchers can estimate statistical offsets that account for the 
differences in detection radius between human observers and 
ARUs when estimating population densities (Solymos et al. 
2013; Van Wilgenburg et al. 2017). These offsets can then be 
used to correct biases in count data collected by ARUs only, 
which would allow acoustic recorders to be deployed over 
large areas or long time periods and calibrated by observers 
visiting sampling points over a small subset of the survey period 
to collect paired data. There is also potential for integration 
of paired ARU sampling with established citizen-science 
monitoring programs (e.g. eBird https://ebird.org/newzealand/
home and The Cacophony Project https://cacophony.org.nz). 
Scientists or trained citizen scientists could conduct paired 
ARU and human observer sampling across different regions 
that can be used to correct acoustic data from citizen science 
repositories. 

To evaluate the potential for ARUs to be used to improve 
bird population monitoring in New Zealand, we conducted a 
field test with the following objectives: (1) to assess whether 
human point count surveys and ARU-based surveys produced 
similar density estimates for multiple New Zealand forest 
bird species, and (2) to test whether the sampling framework 
of Van Wilgenburg et al. (2017) removes bias in estimated 
densities between the two approaches, when it occurs. We 
hypothesised that ARU-based surveys would underestimate 
forest bird densities relative to human point counts because 
the detection radius for ARUs is smaller than for human 
point counts (Van Wilgenburg et al. 2017; Yip et al. 2017). 
We further hypothesised that the paired acoustic sampling 
approach (Van Wilgenburg et al. 2017) would remove these 
biases, when present. 

Materials and methods

Study area
Our study was conducted at six sites in the North Island, 
including two sites in each of Auckland, Waikato and Taranaki 
Regions (Fig. 1), which ranged in size from approximately 
100 ha to 3300 ha, and included three fenced mammal 
free sanctuaries (Tawharanui Regional Park 36°22ʹ18ʹʹ S, 
174°50ʹ33ʹʹ E, Maungatautari Ecological Reserve 38°02ʹ58ʹʹ 
S, 175°33ʹ36ʹʹ E, and Rotokare Scenic Reserve 39°27ʹ14ʹʹ S, 
174°24ʹ35ʹʹ E), and three forest patches with minimal predator 
control (McElroy Scenic Reserve 36°27ʹ32ʹʹ S, 174°41ʹ32ʹʹ 
E, Te Tapui Scenic Reserve 37°48ʹ38ʹʹ S, 175°37ʹ23ʹʹ E, and 
Tarata Conservation Area 39°10ʹ05ʹʹ S, 174°21ʹ24ʹʹ E). We 
included mammal-free sanctuary sites in our study design to 
obtain data for rare species, i.e. North Island robin Petroica 
longipes, North Island saddleback Philesturnus rufusate, 
whitehead Mohoua albicilla.

Forest cover was dominated by mānuka (Leptospermum 
scoparium) mixed with other indigenous trees in Tawharanui 
Regional Park and McElroy Scenic Reserve, and tawa 
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Figure 1. The six study areas (black 
triangles) where we conducted bird 
point counts to assess the effectiveness 
of ARUs relative to human observers 
for estimating bird densities in 
New Zealand. From north to south: 
Tawharanui Regional Park, McElroy 
Scenic Reserve, Te Tapui Scenic 
Reserve, Maungatautari Ecological 
Reserve, Tarata Conservation Area, 
and Rotokare Scenic Reserve.

(Beilschmiedia tawa)–rimu (Dacrydium cupressinum) mixed 
indigenous forest in Maungatautari Ecological Reserve, Te 
Tapui Scenic Reserve, Tarata Conservation Area, and Rotokare 
Scenic Reserve. Median annual total rainfall ranged from 1200 
mm to 1800 mm, median annual mean temperature ranged 
from 13°C to 16°C (rainfall and temperature from National 
Institute of Water and Atmospheric Research 1981–2010 
data), and mean site elevation ranged from 44 m to 442 m 
(see Appendix S1 in Supplementary Material). 

Bird surveys
Surveys were conducted from January to April 2017 at 280 point 
count stations. Points were established at random locations 
>200 m apart (MacLeod et al. 2012; Allen et al. 2013) along 
randomly-selected pest monitoring lines (fenced sanctuary 
sites) or along randomly-placed transects (non-sanctuary 
sites). We revisited each point 2–11 times over the 4-month 

sampling period for a total of 589 surveys. Surveys were 
conducted between 15 minutes and 5 hours after sunrise by 
one trained observer (SB). The observer collected distance data 
following point transect distance sampling protocol (Buckland 
et al. 2001) and time-of-detection data following time removal 
sampling protocol (Farnsworth et al. 2002; Sólymos et al. 
2013). Specifically, the observer recorded exact distances to 
detected birds using a rangefinder and recorded the minute 
interval of initial detection for each individual bird observation 
over a 5-min observation period. 

Before starting each point count, the observer placed an 
Olympus (Olympus Corporation, Center Valley, PA) DM-620 
digital voice recorder with a built-in three microphone system 
in a quiet location approximately 5 m away from the point 
location to avoid impacts to recording quality from noises made 
by observer movement. We chose to use a basic voice recorder 
to test the application of the paired sampling method under a 
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cost-effective sampling regime. ARU settings were: MP3 file 
format at 320 kbps, all three microphones at high sensitivity, 
low cut filter off, and all other recording options set to defaults. 
We ran a pilot study in early 2016 to determine optimal ARU 
settings necessary to retain audio quality while minimising 
memory requirements. We found that we were able to detect 
the same individual birds in audio from an MP3 file format 
at 320 kbps as we could using a higher-quality uncompressed 
PCM file format (48 kHz, 16 bit), so we chose to use the lower 
quality setting to reduce file size. The recorder was placed in a 
small plastic container to protect it from rainfall and moisture. 
The observer then started the audio recording and walked to the 
established point to immediately begin the point count survey. 
After the 5-min bird survey, the observer stopped the audio 
recordings. We did not conduct surveys during precipitation 
above a light drizzle or when winds exceeded 20 kph.

Audio transcription
ARU recordings were transcribed after the field season without 
access to field data by the same observer (SB), as recommended 
by Van Wilgenburg et al. (2017). We did not transcribe audio 
files with high sound interference – i.e. when bird calls could 
not be heard well over background wind or other noise. 
Excluding noisy audio files reduced our dataset from 589 to 
352 paired surveys. We chose to exclude noisy audio files from 
our analysis because they provided less data per effort, but they 
can be included if the transcriber incorporates a covariate to 
account for variation that arises from background noise, e.g. a 
categorical classification or direct measure of background noise 
(Van Wilgenburg et al. 2017). Human counts also only occurred 
during periods of low background noise, e.g. low wind or rain. 
For each audio detection of individuals, the transcriber would 
record the species and exact time of detection. The transcriber 
could replay audio segments to confirm identifications. Times 
for both human and audio count data were later converted to 
three time intervals (0–2 m, 2–4 m, and 4–5 m) for the time 
removal analysis (Farnsworth et al. 2002). We used Raven 
Software (Raven Lite 2.0.0, Bioacoustics Research Program 
2014) to help distinguish cues made by different individuals of 
the same species. Birds of the same species singing at the same 
kilohertz (kHz) range and intensity were considered the same 
individual and thus ‘removed’ from being further detected. 

Analysis summary
To evaluate the efficacy of using ARUs for monitoring birds in 
New Zealand, we followed the framework of Van Wilgenburg 
et al. (2017) to generate maximum likelihood δ offsets that 
represent the relationship between ARU and human observer 
bird counts. We used δ estimates to assess bias in bird counts 
and density estimates derived from ARU data relative to human 
point count data, and we validated our findings using repeated 
random subsampling (Van Wilgenburg et al. 2017). In the 
section below, we provide a brief overview of the theoretical 
background of the paired sampling method. In the following 
section, we describe how we applied the method to assess 
ARU to human observer bias in New Zealand while noting 
any modifications we made. 

Theoretical background 
The paired acoustic sampling approach (Van Wilgenburg et al. 
2017) requires observers to conduct simultaneous audio and 
human point counts and collect time-of-detection and distance 
data during the human point counts. Thus, paired sampling 

is similar to the double observer method in that it utilises a 
‘secondary observer’, i.e. an ARU, to estimate differences in 
detection among observers (Nichols et al. 2000). This method 
assumes that the population present in a surveyed area for a 
given species is equal for both the human observer and the 
audio recorder and that both are exposed to the same acoustic 
signals. Thus, differences between human and ARU counts 
should arise chiefly from differences in the area sampled by 
the two methods (Van Wilgenburg et al. 2017). 

Paired acoustic sampling allows biologists to produce 
population density or abundance estimates that incorporate 
two components of the detection process: (1) the probability 
that a bird in the survey area gives a visual or audio cue that is 
available to be detected (probability of availability, p); and (2) 
the probability that a bird was detected, given it was available 
for detection (probability of perceptibility, q) (Alldredge et 
al. 2007; Nichols et al. 2009; Van Wilgenburg et al. 2017). 
Availability (p) is estimated for both ARUs and the human 
point count data using removal or time-of-detection methods 
(Farnsworth et al. 2002; Alldredge et al. 2007; Sólymos et al. 
2013). Perceptibility (q) is estimated from the human point 
count data using distance sampling methods (Buckland et al. 
2001) and modelled with a conditional maximum likelihood 
approach that accounts for differences in the area sampled, or 
effective detection radius (EDR), between human point counts 
and ARUs (Van Wilgenburg et al. 2017). 

See Van Wilgenburg et al. (2017) for the complete theory 
but briefly, the expected value of a count from human observer 
data is represented as:

 						      (1)

where YH is the count; N is the species’ abundance; p is the 
probability of species’ availability, given presence, during the 
cumulative duration of the count; and q is the probability a 
bird is detected, given availability. This can be rewritten when 
replacing perceptibility (q) with the area sampled (AH) to:

 					     (2)

where D is the species’ density at the point, and AH is the area 
sampled in the human point counts, which can be estimated 
using distance sampling methods as                   , where τ = 
effective detection radius. Assuming equal density (DH = DA = 
D) and equal availability (pH = pA = p) among survey methods, 
and replacing perceptibility (q) with the area sampled (AH), 
we can take the mean of the expected ARU to human observer 
counts to represent the relationship between the areas sampled 
between the two methods:

 					     (3)

If we set δ =                                                           , so we

could rewrite equation 3 as:

 						      (4)

which is the squared scaling constant that relates the effective 
detection radius of the human count data to the unknown 
effective detection radius of the ARU. The δ2 estimate can 
be derived as above, or as a maximum likelihood estimate 
that accounts for differences in sampling strategies, which is 
calculated by back-transforming a ‘survey type’ coefficient 
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(δ2= exp(β)) in a Poisson or negative binomial regression 
model (Van Wilgenburg et al. 2017). Here ‘survey type’ is a 
fixed effect for ARU or human surveys, with human as the 
reference category, and δ2= exp(β) represents the ratio of bird 
counts for a species between ARUs and human observers and 
thus is a measure of bias in τ between the two methods, derived 
from the generalised linear mixed effects model (GLMM) 
maximum likelihood coefficients. 

The δ2 estimate is then included as a statistical offset in 
Poisson or negative binomial GLMMs to model count data 
from both the human point counts and audio counts, where δ2 

accounts for the differences in the effective detection radius 
between both survey methods (Van Wilgenburg et al. 2017). 
The GLMM models also incorporate a random ‘sampling 
point’ effect to account for multiple visits to sampling points 
and a statistical offset that accounts for imperfect detection 
across the different survey types through a correction factor 
(C =               , where τ and p are estimated from the human 
observer data using distance sampling and time removal 
sampling, respectively (Sólymos et al. 2013; Van Wilgenburg 
et al. 2017). The δ offset is fit with an indicator function (IA) in 
the Poisson or negative binomial GLMM models that takes the 
value of zero for human observer data and a value of one for 
ARU data. Thus, the mean count for a point location i with the 
correction factor C and squared scaling constant δ is written as:

 				    (5)

Data analysis
We followed the approach described above and in Van 
Wilgenburg et al. (2017) to conduct our analyses for multiple 
forest bird species (see Appendix S2 for a list of species and 
scientific names), excluding those with less than 20 detections 
and those commonly detected as flyovers (e.g. New Zealand 
falcon Falco novaeseelandiae). We fit count removal models 
using the ‘detect’ package (Sólymos et al. 2016) in R version 
3.4.2 (R Development Core Team 2008) with a ‘survey type’ 
factor to estimate availability (p) and assess differences in 
p between ARU and human point count data. We excluded 
species that did not meet the pH = pA assumption (i.e. if the 
95% confidence intervals between pH and pA did not overlap) 
from further analyses. We used p estimates from the remaining 
species’ models to calculate the correction factor, C. 

We used program Distance version 7.1 (Thomas et al. 2010) 
to estimate τ. Unlike Van Wilgenburg et al. (2017), we did not 
bin exact distance measurements into distance intervals. We fit 
models with the following key detection functions and series 
expansions: a half normal function with a hermite expansion, a 
hazard rate function with a simple polynomial expansion, and 
a uniform function with a cosine expansion. Distance sampling 
models also included a survey effort correction to account for 
repeated visits to plots, where the number of sampling points, 
K, in the density equation was multiplied by the number of 
visits to each point (See Section 1.6 in Buckland et al. 2015). 
Prior to analysis, we viewed detection function histograms and 
truncated data to visually identified distances when truncation 
improved model fit (i.e. increased the p-value in Kolmogorov–
Smirnov goodness-of-fit tests) over untruncated models. We 
used Akaike’s Information Criterion with a small sample size 
correction (AICc) to identify the most parsimonious model 
(Burnham & Anderson 2002) and used the τ estimate from 
this model in the correction factor (C) calculation.

Two species (North Island robin and New Zealand fantail 
Rhipidura fuliginosa) frequently approached observers, which 

(C = 𝜋𝜋τ̂𝐻𝐻
2 𝑝̂𝑝𝐻𝐻)

log(𝜆𝜆𝑖𝑖) = log(𝐷𝐷𝑖𝑖) + log(𝐶𝐶𝑖𝑖) +  𝐼𝐼𝐴𝐴log (𝛿𝛿2)

(C = 𝜋𝜋τ̂𝐻𝐻
2 𝑝̂𝑝𝐻𝐻)

log(𝜆𝜆𝑖𝑖) = log(𝐷𝐷𝑖𝑖) + log(𝐶𝐶𝑖𝑖) +  𝐼𝐼𝐴𝐴log (𝛿𝛿2)

violated the distance sampling assumption of no movement 
in response to observers. Since all observers were trained to 
note the initial location of any animals that moved in response 
to the observer, this issue should have been minimised by our 
field methods. Yet, because some individuals may have been 
missed, we also used a grouping analysis method outlined in 
Buckland et al. (2015) to address this potential issue, where the 
width of the first distance interval was chosen to encompass 
the distance over which animals will respond to observers. 
From field trials, we identified these distances to be 12 m for 
the New Zealand fantail and 20 m for the North Island robin 
and we grouped all detections between 0–12 m and 0–20 m 
for these species, respectively, during the distance sampling 
model fitting process.

We used repeated random subsampling to validate the 
models and evaluate bias in density estimates, as in Van 
Wilgenburg et al. (2017). We randomly selected 70% of 
the point count locations over 50 iterations and used these 
subsamples to estimate δ2 and 95% confidence intervals across 
the replicates using the GLMM modelling approach described 
above, where δ2= exp(β). These δ2 estimates were used in 
the same iteration with the remaining 30% data subset to fit 
models for the human observer and ARU data that included 
a statistical offset with both C and δ2 incorporated. We also 
used the 30% validation data subsampled over 50 replicates 
to calculate δ2 as an empirical ratio of mean bird count totals 
from ARU surveys to mean count totals from human surveys. 
We compared δ estimates and 95% confidence intervals for δ 
produced from maximum likelihood estimates using the full 
dataset to those produced with the 70% calibration data and 
to the empirical estimates produced with the 30% validation 
data subsample. We also used the 30% subset validation data to 
evaluate bias in density estimates derived from ARUs relative 
to human point counts. Bias was calculated as the difference in 
mean densities predicted by ARU models vs. human observer 
models (DA – DH). We estimated DH by fitting GLMM models 
to the human count data for each 30% validation subsample. 
The model included a random intercept for repeated visits to 
sampling points and a statistical offset that adjusts for biases 
in availability and perceptibility, i.e. log             . We used the 
same GLMM modelling procedure to estimate DA, except 
we fit two models to the ARU data, a model with the same 
statistical offset used for the human observer data and a model 
that incorporated δ2 (estimated from the calibration data) in 
the statistical offset, i.e. log                  . We calculated bias in  
ARU density estimates for both offset methods. We also 
evaluated whether models with a ‘survey type’ effect were 
supported over null models for all species using AIC model 
selection to select the most parsimonious models (ΔAIC < 2.0; 
Burnham & Anderson 2002). We calculated variance explained 
by the null and ‘survey type’ models using Nakagawa and 
Schielzeth’s (2013) conditional R2 (R2

GLMM(c)).
 

Results

We detected 29 species across all sites (Appendix S2), of which 
14 species met our selection criteria including the Australasian 
magpie Gymnorhina tibicen, bellbird Anthornis melanura, 
chaffinch Fringilla coelebs, common myna Acridotheres 
tristis, Eurasian blackbird Turdus merula, grey warbler 
Gerygone igata, kererū Hemiphaga novaeseelandiae, New 
Zealand fantail, North Island robin, North Island saddleback, 
silvereye Zosterops lateralis, tomtit Petroica macrocephala, tūī 

𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝)

 (𝛿𝛿2𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝).

𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝)

 (𝛿𝛿2𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝).

𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝)

 (𝛿𝛿2𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝).

𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝)

 (𝛿𝛿2𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝).
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Table 1. Probability of availability estimates from simultaneous point counts conducted by ARUs (pA) and human observers 
(pH) for 13 bird species detected across six native forest sites in 2017 on the North Island of New Zealand. Availability (p) 
was estimated using time removal methods.
__________________________________________________________________________________________________________________________________________________________________

LCL		  pH	 UCL	 LCL	 pA	 UCL
__________________________________________________________________________________________________________________________________________________________________

Bellbird	 0.861	 0.923	 0.964	 0.873	 0.934	 0.972
Chaffinch	 0.422	 0.771	 0.981	 0.667	 0.852	 0.964
Fantail	 0.835	 0.915	 0.966	 0.909	 0.954	 0.981
Grey warbler	 0.779	 0.868	 0.933	 0.737	 0.837	 0.915
Kererū	 0.001	 0.147	 1.000	 0.165	 0.506	 0.936
Magpie	 0.819	 0.922	 0.978	 0.747	 0.879	 0.961
Myna	 0.607	 0.868	 0.987	 0.868	 0.968	 0.997
North Island robin	 0.536	 0.788	 0.956	 0.715	 0.887	 0.977
Saddleback	 0.527	 0.766	 0.940	 0.717	 0.854	 0.947
Silvereye	 0.320	 0.509	 0.732	 0.477	 0.638	 0.796
Tomtit	 0.663	 0.820	 0.933	 0.903	 0.948	 0.977
Tūī	 0.730	 0.817	 0.891	 0.890	 0.929	 0.958
Whitehead	 0.610	 0.839	 0.971	 0.360	 0.672	 0.938
__________________________________________________________________________________________________________________________________________________________________

Prosthemadera novaeseelandiae, and whitehead. All species 
except the Eurasian blackbird met the assumption of equal 
availability, (95% confidence intervals overlapped for pH and 
pA estimates), so all but blackbirds were considered in further 
analyses. However, the tomtit and tūī had confidence intervals 
that only slightly overlapped for ARU and human observer 
estimates (Table 1). Removal model estimates of availability 
between human and ARU count data were highly correlated 
(Pearson’s r = 0.84, p = 0.0003) across all species. 

The effective detection radius, τ, from the human observer 
data ranged from 16 m to 85 m (Appendix S3), and the scaling 
constant, δ, ranged from 0.814 to 1.247 (median = 0.954) (Fig. 
2, Appendix S4). Calibration δ estimates from the GLMMs 
fit to 70% of the data over 50 iterations were similar to the 
maximum likelihood estimates (range = 0.793 to 1.239; median 

= 0.943) (Fig. 2, Appendix S4). A δ value of 1.0 indicates 
that ARU count data and human count data are the same, and 
values <1.0 indicate that fewer birds were detected during 
ARUs than during human surveys. Most species’ maximum 
likelihood δ estimates were just below 1.0, indicating that they 
were detected slightly less during ARU surveys than human 
point count surveys (Fig. 2, Appendix S4). However, the δ 
estimates for the bellbird, kererū, and silvereye ranged from 
0.8 to 0.9 (Fig. 2, Appendix S4), which indicates that they 
were detected 10–20% less during ARU surveys. Tomtit and 
chaffinch δ estimates were 1.12 and 1.25, respectively (Fig. 
2, Appendix S4), which indicates that they were detected 
12–25% more during ARU surveys. The confidence intervals 
from the maximum likelihood δ estimates overlapped 1.0 for 

Figure 2. Comparison of maximum 
likelihood δ estimates (a measure 
of bias between ARU and human 
survey bird counts) produced using 
GLMMs (y-axis) and empirically-
estimated δ values (x-axis). GLMM 
estimates are derived from Poisson 
model regression coefficients as  
δ =   exp (β)  from models fit to  
70% of the data. Empirical 
estimates were produced using 
the withheld 30% validation 
data by taking the square root 
of the ratio of mean bird count 
totals from ARU surveys to mean 
count totals from human surveys. 
For both GLMM and empirical 
approaches, values <1.0 indicate 
that fewer birds were detected 
using ARUs than during human 
surveys. 
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nine of 13 species (excluding the bellbird, kererū, silvereye, 
or tūī) (Fig. 2, Appendix S4). The square root of the empirical 
ratio ranged from 0.910 to 1.10 (median = 1.01; Fig. 2). 
The confidence intervals around the maximum likelihood δ 
estimates overlapped with the confidence intervals for the 
empirical ratio δ estimates (Eqn. 4) for all species except the 
grey warbler and the silvereye (Appendix S4). 

Models that included δ2 statistical offsets reduced bias 
in density estimates for 10 of 13 species compared to models 
that included the offset for availability and perceptibility
                      only (Fig. 3). Three species, the kererū, silvereye, 
and tūī, had negatively biased density estimates (95% 
confidence intervals around bias estimates did not overlap 
zero) when δ offsets were not incorporated and one species, 
the chaffinch, had a positively biased density estimate without 
δ offsets. Density estimates for all species were unbiased (95% 
confidence intervals overlapped zero) when δ offsets were 
incorporated (Fig. 3). 

Models with the ‘survey type’ effect were supported over 
null models for seven of 13 species, but both null models and 
models with the ‘survey type’ effect explained similar variance 
(R2

GLMM) and had ΔAICc < 2.0 for all but the bellbird, kererū, 
silvereye, and tūī (Table 2). The ‘survey type’ model was the 
only model with ΔAICc < 2.0 for them, suggesting that ARU 
data may produce biased estimates relative to human observer 
data for these species.

Discussion

Our findings suggest that ARUs offer a promising tool for 
increasing the efficiency of forest bird population monitoring 
in New Zealand. We found that densities produced by ARU 
counts and human observer counts were generally equivalent 
for most species, and when present, ARU bias can be corrected 
for using the paired acoustic sampling method (Van Wilgenburg 
et al. 2017). We found partial support for our hypothesis that 

(log (𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝))

Figure 3. Bias in density estimates (birds ha-1) and 95% confidence 
intervals from ARUs relative to estimates from human point counts 
(DA – DH) for ARU models with δ (red triangles) and without δ 
(blue circles) incorporated into statistical offsets that adjust for 
biases in availability and perceptibility, i.e.

The δ constant corrects for differences in the area sampled 
between ARUs and human observers and was calculated as  δ =   
  exp(β) from GLMMs fit to 70% of the data over 50 iterations. 
Densities were estimated using the withheld 30% validation data. 
Estimates with 95% confidence intervals that overlapped zero are 
drawn with closed circles and estimates with confidence intervals 
that did not overlap zero are drawn with open circles. 

(𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝛿𝛿𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝) vs. log (𝜋𝜋τ̂𝐻𝐻

2 𝑝𝑝)

(𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝛿𝛿𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝) vs. log (𝜋𝜋τ̂𝐻𝐻

2 𝑝𝑝)

(𝐷̂𝐷𝐴𝐴 − 𝐷̂𝐷𝐻𝐻)

log (𝛿𝛿𝜋𝜋τ̂𝐻𝐻
2 𝑝𝑝) vs. log (𝜋𝜋τ̂𝐻𝐻

2 𝑝𝑝)

Table 2. Model selection results (ΔAICc values of model rank relative to the model with the lowest AICc value) for Poisson 
GLMM comparisons between null models (random effect for point transect only) and models with both a point transect 
random effect and a ‘survey type’ fixed effect to account for differences between bird surveys conducted by ARUs and 
human observers. Also shown are conditional R2

GLMM values for GLMMs. 
__________________________________________________________________________________________________________________________________________________________________

Species	         Competing models
	 Null 	 R2

GLMM	 Survey type	 R2
GLMM__________________________________________________________________________________________________________________________________________________________________

Bellbird	 7.575	 0.615	 0.000	 0.618
Chaffinch	 1.808	 0.470	 0.000	 0.512
Fantail	 0.000	 0.104	 1.701 	 0.107
Grey warbler	 1.000	 0.087	 0.000	 0.091
Kererū	 3.253	 0.712	 0.000	 0.716
Magpie	 0.000	 0.236	 1.656	 0.236
Myna	 0.000	 0.839	 1.975	 0.842
North Island robin	 0.000	 0.589	 0.532	 0.587
Saddleback	 0.000	 0.429	 1.713	 0.426
Silvereye	 11.579	 0.827	 0.000	 0.850
Tomtit	 1.411	 0.629	 0.000	 0.631
Tūī	 2.599	 0.297	 0.000	 0.305
Whitehead	 0.000	 0.832	 1.902	 0.832
__________________________________________________________________________________________________________________________________________________________________
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ARU bird counts would be low relative to human observer 
counts, as the δ estimate (representing the ratio of ARU counts 
to human observer counts) from both maximum likelihood and 
empirical approaches was slightly below 1.0 (Fig. 2, Appendix 
S4), and the bias in density estimates between ARU and 
human observer counts was negative for most species (Fig. 3). 
However, 95% confidence intervals around δ overlapped 1.0 
for nine of 13 species (Fig. 2, Appendix S4), 95% confidence 
intervals around density bias estimates overlapped zero for 
nine of 13 species (Fig. 3), null models were supported by 
the data (ΔAICc < 2.0) for nine of 13 species (Table 2), and 
models with ‘survey type’ fixed effects explained little extra 
variation in the data beyond null models for most species 
(Table 2), suggesting that the bias in ARU bird count data is 
negligible for most species. This finding that ARUs and human 
counts produce similar results is consistent with several other 
studies that found comparable bird abundance, occupancy, or 
community composition between ARU and human observer 
counts (Hobson et al. 2002; Celis-Murillo et al. 2009; Blumstein 
et al. 2011; Digby et al. 2013; Van Wilgenburg et al. 2017).

Although ARU and human observer data were comparable 
for most species, we found that ARUs may underrepresent 
densities for the bellbird, kererū, silvereye, and tūī. Upper 
confidence limits for δ were <1.0 and δ values ranged from 
0.80 to 0.91 for these species (Fig. 2, Appendix S4). Density 
estimates were negatively biased for all but the bellbird (Fig. 
3), and null models were not supported in AIC model selection 
comparisons for all four species (Table 2). These lines of 
evidence suggest that ARU data may underestimate population 
densities of these species by approximately 10–20% if the bias 
is not accounted for. Yet, the upper confidence limit for the tūī 
δ estimate was just below 1.0 (UCL = 0.99), so bias in ARU 
counts for the tūī may be minimal. 

Based on our knowledge of bird behaviour and our 
experience conducting field surveys, we can speculate why 
some species were detected less in ARU recordings than in 
human point counts. First, the bellbird and tūī often produced 
short single-note calls from distances over 70 m away in our 
study. These distant calls were easily detected by the observer 
but were likely missed by the audio recorder, a problem also 
encountered in automated birdsong detection (Priyadarshani 
et al. 2018). Second, the kererū was generally detected by the 
observer upon hearing its strong wingbeats while flying, or 
by its low frequency (2–3 kHz) coos, but these sounds were 
easily drowned out by even low background noise during 
point counts. The observer was able to see birds when flying, 
which seemed to compensate for missed sound cues. Without 
the added visual cues, sound cues from kererū may be missed 
in acoustic recordings in all but those environments with the 
least ambient noise, resulting in under-estimated densities, 
if uncorrected. Similarly, Steer (2010) had fewer detections 
of bird calls <5 kHz. The silvereye also produces relatively 
low-frequency calls and songs (<10 kHz), but they call or 
sing with regularity (Steer 2010), which generally made 
them easy for the observer to detect in our study and in the 
audio recordings. However, they also frequently occurred in 
large flocks that were easy to count by visual observation but 
would be impossible to accurately count in an audio recording. 
Thus, we likely undercounted silvereyes during the audio 
transcription process. Distance sampling can be adapted to 
accommodate species that frequently occur in clusters by 
including an estimate of cluster size (Buckland et al. 2001); 
however, we did not collect data to estimate cluster size and 
could not apply this technique. We recommend that observers 

collect data to estimate cluster size when silvereye populations 
are being monitored with ARUs. Based on our findings and 
field observations, we speculate that ARUs may underestimate 
bird counts in the following conditions: (1) when species are 
frequently detected from far distances by single-note calls; 
(2) when species only produce low-frequency sounds; or (3) 
when species occur in clusters if information on cluster size 
is not included during distance sampling analysis. 

Two species, the tomtit and chaffinch, had δ estimates above 
1.0, suggesting that they were slightly more detectable in ARU 
recordings than in counts by human observers, but confidence 
intervals around δ slightly overlapped 1.0. We speculate that 
these species were more detectable in ARU recordings because 
transcribers can pause and rewind recordings, which may 
facilitate detection of species that are easily missed, e.g. those 
with short duration calls. Although the tomtit and chaffinch 
both have long duration songs, their calls are relatively short, 
and some calls may have been missed during human observer 
counts that were detected in audio recordings. Celis-Murillo 
et al. (2009) also found higher detection probability for 
some birds when comparing ARU data to field survey data, 
which suggests that paired acoustic sampling may improve 
detection in some cases. Another explanation for the positive 
bias in ARU recordings may relate to the consistency of bird 
calls – Steer (2010) indicated that species that call regularly 
could be overrepresented in audio recordings. The chaffinch 
and tomtit sometimes call repeatedly, but other species that 
call regularly (e.g. silvereyes) were not overrepresented in the 
audio recordings during our study, so calling regularity may 
not explain the positive bias for these species. Furthermore, 
we carefully viewed spectrograms when listening to audio 
recordings to reduce the chance of double-counting an 
individual that calls regularly during the recording.

We found that the inclusion of δ statistical offsets 
reduced bias in density point estimates from ARU recordings 
relative to human point counts for most species, including 
the kererū, silvereye, and tūī, which had δ estimates below 
1.0 and negatively biased density estimates when models did 
not include δ. Importantly, confidence intervals around the 
density bias estimate overlapped zero when the δ offset was 
incorporated into GLMMs, which suggests that the paired 
acoustic sampling approach (Van Wilgenburg et al. 2017) 
can be used to produce unbiased density estimates relative to 
human point counts for many New Zealand forest birds. This 
strategy uses common Poisson or negative binomial GLM or 
GLMM models with ‘survey type’ effects to generate offsets 
that correct for potential biases from ARU-derived data. The 
ability to correct ARU bias allows researchers to deploy ARUs 
over a larger sampling scheme while only visiting a subset 
of sampling points or sampling occasions to collect paired 
data. Given the relative ease of adding an audio recorder to 
traditional point counts, and the familiarity of the GLMM 
modelling procedure, this approach provides a promising 
opportunity for researchers and scientists to advance population 
monitoring nation-wide. 

We emphasize that ARUs should be considered a 
supplemental monitoring strategy to field-based data collection. 
If reliable population monitoring estimates are to be produced, 
researchers will need to regularly conduct paired counts to 
test the assumption of equal availability and validate the 
performance of these models over time and in different contexts. 
In particular, since we tested this approach in indigenous forest 
habitat, caution should be used when extrapolating our findings 
to different habitat types, as the acoustic environment may 
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change in other habitats and impact the relationship between 
ARU counts and human observer counts for some species (Van 
Wilgenburg et al. 2017; Yip et al. 2017). However, we suggest 
that this method warrants exploration and field testing in other 
habitat types and encourage inclusion of ‘habitat’ fixed effects 
into the GLMMs to account for habitat variation if multiple 
habitats are surveyed for a species. Furthermore, sampling 
dates and times must be similar between audio recordings and 
human point counts, i.e. dawn recordings cannot be used to 
calibrate evening recordings, and recordings made during the 
breeding season cannot be used to calibrate those made at other 
times of the year. Since our study was conducted from mid to 
late summer, our findings may reflect post-breeding season 
differences between ARUs and human observers and could 
differ from those produced using data from breeding seasons. 
However, Van Wilgenburg et al. (2017) found that paired 
sampling corrected ARU bias in bird surveys conducted during 
the breeding season in North America, thus it is reasonable to 
expect that this method could also be useful during breeding 
season surveys in New Zealand. We encourage the adoption 
of this method more widely, which would allow generalisable 
delta offsets to be produced, and conclusions to be made about 
the suitability of paired sampling across a range of habitats, 
times, and seasons. Until these generalities can be verified, 
we discourage researchers from deploying acoustic recorders 
alone, without also conducting paired human point counts at 
a subset of points that can be used to estimate ARU bias in 
their study. Nevertheless, we believe that the ability to collect 
more data for a smaller field effort justifies further exploration 
of the usefulness of this method.  

It is also important to note that although the data collection 
component of this method requires minimal investment relative 
to regular point counts, transcription of audio recordings post-
data collection requires an added time investment by skilled 
observers (Priyadarshani et al. 2018). However, in our study, 
the cost of labour for transcription was much lower than the 
cost of sending field observers to collect the same amount of 
data because the considerable time spent navigating to sampling 
points was reduced. Furthermore, advancements in machine 
learning technology may soon make automated detection of 
bird calls from acoustic datasets a cost-effective and reliable 
solution (Brandes 2008; Acevedo et al. 2009; Digby et al. 2013; 
Stowell & Plumbley 2014). However, automated detection 
does have limitations. These include increased false-positive 
detections, misclassification issues, difficulties in dealing with 
noisy recordings or calls from distant birds, and the need for 
researchers to have knowledge of the complex modelling 
techniques used in these methods (Priyadarshani et al. 2018). 
Thus, manual audio transcription may continue to be used by 
most researchers for some time, and the costs of transcription 
should be considered. 

We tested the paired acoustic sampling method with a 
relatively low-cost acoustic recording setup. We chose to 
use a basic voice recorder (Olympus DM-620) without an 
added microphone as opposed to a professional bioacoustic 
monitoring setup (e.g. Song Meter SM4, Wildlife Acoustics, 
Inc., Maynard, MA, USA) because we wanted to test the 
application of the paired sampling method under a high cost 
efficiency scenario. The recorders we chose cost approximate 
$250 NZD and allow for automated recording at pre-set 
time intervals. Comparatively, a professional recorder, e.g. 
SongMeter SM4 (Wildlife Acoustics 2018), costs over $1000 
NZD, and microphone, power, and storage accessories may 
add several hundred dollars in additional costs. However, 

there is a compromise in using our low-cost approach in terms 
of battery life and storage capacity. Our recorders can store 
36GB of data, whereas the SongMeter SM4 can store up to a 
terabyte of data (Wildlife Acoustics 2018). Our recorders ran 
for approximately 25 hours of recording time at our settings, 
but at higher quality settings (i.e. 44.1 kHz 16-bit wav files), 
the recording time is reduced to 6 hours. The SongMeter SM4 
can record up to 400 hours of high-quality stereo recordings 
before internal batteries need to be replaced (Wildlife Acoustics 
2018). Thus, our low-cost setup will require more frequent 
visitation by field workers to download data and change 
batteries than with professional setups, and these added costs 
need to be considered when selecting an appropriate acoustic 
monitoring scheme. Although biases may exist for different 
acoustic recording setups (Yip et al. 2017), paired acoustic 
sampling can remove these biases because it corrects for 
differences in detection probabilities between a given ARU 
and human observers (Van Wilgenburg et al. 2017). 

Other methods are available to estimate bird densities from 
acoustic data, e.g. acoustic arrays (Dawson & Efford 2009; 
Mennill et al. 2012) and acoustic localisation (Collier et al. 
2010), or to estimate the bias in density between ARU and 
human observers with experimental playbacks (Yip et al. 2017). 
Yet, these methods are logistically more challenging, costlier, 
and in the case of the playbacks, require extra assumptions to 
be made about a species’ singing amplitude (Van Wilgenburg 
et al. 2017). Thus, the paired acoustic sampling approach 
can provide a cost-effective, relatively easy to implement 
alternative to other sampling strategies that correct biases 
in ARU data when estimating bird abundance or population 
densities. Our study and others have shown that ARUs can 
produce unbiased abundance and presence-absence data for 
many bird species in New Zealand and globally (Hobson et 
al. 2002; Celis-Murillo et al. 2009; Blumstein et al. 2011; 
Digby et al. 2013), and our study provides additional support 
that the paired sampling approach can be used to correct for 
ARU bias when present (Van Wilgenburg et al. 2017). Thus, 
we recommend increased use of ARUs for bird population 
monitoring programs in New Zealand and additional testing 
to refine our estimates and asses our findings in a variety of 
habitats and contexts. 

ARUs offer promising new opportunities to expand 
research on bird conservation and ecology in New Zealand. 
Increased efficiency may allow bird surveys to be conducted at 
greater spatial and temporal scales, which could lead to advances 
in our understanding of forest bird population responses to 
invasive mammal eradications, habitat fragmentation or loss, or 
changes in metapopulation dynamics. Paired acoustic sampling 
can also be used in a meta-analysis of historic point count 
data (Van Wilgenburg et al. 2017), which further highlights 
the potential for this method to be used to expand research 
opportunities and generate new insights for bird conservation 
and ecology in New Zealand. 
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Additional supporting information may be found in the 
supplementary material file for this article:

Appendix S1. Characteristics of the six study areas in which 
we conducted bird point counts using both human observers 
and ARUs. 

Appendix S2. Species detected across all study sites in 2017, 
indigenous status, and whether density was estimated or not 
for the species and the reason.

Appendix S3. Estimates of effective detection radius, τ 
(Buckland et al. 2001), and 95% confidence intervals for 13 
bird species detected across six indigenous forest sites in 2017 
on the North Island of New Zealand.

Appendix S4. Estimates of the scaling constant δ (a measure 
of the ratio of the effective detection radius between bird 
count data derived from ARU and human survey methods) and 
95% confidence intervals produced using (1) the maximum 
likelihood approach (MLE δ) of Van Wilgenburg et al. (2017), 
(2) using the MLE approach over 50 repeated subsamples of 
70% of the data (calibration δ), and (3) by estimating empirical 
ratios of mean bird count totals from ARU surveys to mean 
count totals from human surveys over 50 repeated subsamples 
of 30% of the data. 
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