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Abstract: Removing wilding conifers (invasive non-native trees in the Pinaceae) has become a major focus 
of conservation and land management in Aotearoa New Zealand. Management of wilding conifers has been 
supported by applied research on control methods, generally with a short-term focus of removing or containing 
invasions to prevent further spread. However, a focus on short-term management activities may not achieve 
desired longer-term outcomes of restoring economic and environmental values. Greater integration of ecological 
research on wilding conifer impacts and legacies with management can help to ensure long-term goals are 
achieved. We review how impacts and legacies of wilding conifers develop and persist over time. Several 
key thresholds or tipping points are identified, where prioritising management may avoid state-changes in 
ecosystems. We then review the potential of sites to support different land uses after wilding conifers have been 
controlled, including pasture, plantations and native restoration, and develop a decision support tree to guide 
successful transition to these land uses. We find that maintaining anthropogenic native tussock grasslands is 
unlikely to be a sustainable goal on most invaded sites without major sustained management interventions. 
Native woody cover is likely more sustainable, but often requires additional management of post-removal 
legacies of wilding conifers, including other invasive plants such as sward-forming non-native grasses. Shade 
tolerant wilding conifers, such as Douglas-fir, remain a pernicious problem in any effort to prevent reinvasion 
into woody vegetation. Although there are still questions about the causes and consequences of wilding conifer 
invasions, ecological research can provide helpful guidance to improve long-term outcomes following wilding 
conifer control.
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Introduction

Of the more than 2500 non-native plant species naturalised in 
New Zealand, “wilding conifers” (invasive trees in the family 
Pinaceae, particularly Pinus contorta, P. nigra, P. radiata,  
P. mugo, Larix decidua and Pseudotsuga menziesii) are amongst 
the most problematic (Brandt et al. 2021). In the absence of 
management, some estimates suggest that wilding conifers 
could spread to 7.46 million hectares over the next 15–30 year 
period, or approximately 28% of New Zealand’s land area, 
albeit at variable abundance (Wyatt 2018). Wilding conifer 
invasions particularly threaten tussock grasslands, frost flats, 
and alpine areas (Campbell 1984; Smale 1990), where the 
invasion of fast growing trees into treeless or low-statured 
vegetation causes fundamental shifts in almost every aspect 
of these ecosystems.

Wilding conifer management first began in the 1960s 

(Fig. 1) (Ledgard 2001), but has accelerated over the past 
15 yrs. Wilding conifer control operations attract a national 
investment of $100 million over four years as of 2020 
(https://www.beehive.govt.nz/release/budget-2020-jobs-and-
opportunities-primary-sector), and substantial additional costs 
are borne by landowners, industry, and local community groups 
(Peltzer 2018; Wyatt 2018). While the expense of control is 
considerable, economic analyses suggest that this investment 
is highly worthwhile, achieving an outstanding benefit:cost 
ratio of 38:1 (Wyatt 2018). This reflects the relatively high 
potential cost of wilding conifer impacts on water resources 
and grazing land if invasions are not controlled. Biodiversity 
is also under a high level of threat from wilding conifers, but 
is more difficult to quantify in monetary terms (Wyatt 2018).

Given the relatively high economic costs and ecological 
effects of wilding invasion, it is not surprising that a substantial 
amount of research has been done on wilding conifers in 
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Figure 1. Illustrative examples of different invasions and how they progress through high-cost management strategies to post-control 
results, showing wilding conifer invasions in different habitats: (a) geothermal area in the Waikato, and (b) flats and slopes along Clarence 
river, Canterbury; (c) control methods using herbicide applied into holes drilled into tree trunks (“drill and fill”) and (d) aerial application 
of herbicide as foliar spray; and (e, f) post-control outcomes of the drill and fill and aerial foliar spray application methods. Photos by  
R Sprague (a–c, e, f) and N Ledgard (d).

New Zealand. Management-oriented research has included 
improved methods for detection (Dash et al. 2019), management 
techniques (Ledgard 2009), herbicide application (Gous et al. 
2015; Scholten et al. 2019; Richardson et al. 2020), and potential 
for biocontrol (Hill et  al. 2003; Brockerhoff et  al. 2016). 
Based in part on this research, removal of wilding conifer via 
herbicides, cutting, and other techniques is now routine. This 
research has underpinned the New Zealand Wilding Conifer 
Management Strategy 2015–2030 (MPI 2014) which has a 
focus on removing wilding conifers at the landscape scale 
through control, containment, or eradication but does not 
consider rehabilitation or restoration.

Removal frequently fails to kill 100% of trees and may 
result in post-removal dominance by other non-native species, 
or reinvasion by wilding conifers (Dickie et al. 2014a; Peltzer 
2018). From other plant invasions, we know that changes of 
ecosystem state driven by invasive species can result in long-
term ecosystem legacies following eradication (Reynolds 
et  al. 2017), and this appears to be the case with wilding 
conifer removal as well (Dickie et al. 2014b). These legacies 
may contribute to long-term challenges in management and 
contribute to undermining weed management objectives over 
time (Hulme 2020). Thus current control methods may help 
reduce spread, but fail to restore ecosystems. This is reflected in 
a national-scale focus on area treated and percent kill, rather than 
whether long-term desired land-use outcomes are achieved.

In parallel to control-oriented research, there has been 
extensive ecologically focussed research on wilding conifers 
in New Zealand, which is highly relevant to ecosystem 
restoration. Ecological research has investigated drivers 
and mechanisms of invasion, including seed production and 

dispersal (Caplat et al. 2012; Coutts et al. 2012; Wyse et al. 
2019; Wyse & Hulme 2021), plant traits versus introduction 
effort (Bellingham et al. 2004; McGregor et al., 2012), and 
fungal associations of wilding conifers (Davis & Smaill, 2009; 
Dickie et al. 2010; Moeller et al. 2015; Gundale et al. 2016) 
and their dispersal by mammals (Wood et al. 2015). Other 
ecological research has focussed on impacts on soil nutrients 
(Dickie et al. 2011), plant communities (Dickie et al. 2014b; 
Howell & McAlpine 2016; Davis et al. 2019), and fire risk 
(Taylor et al. 2017) in invaded areas. Lastly, a few studies 
have considered impacts of wilding conifer invasions on 
surrounding ecosystems, including stream biofilms (Thompson 
& Townsend 2004) and deep sea trenches (Leduc & Rowden 
2018). Several recent studies consider societal dimensions of 
invasion including social values associated with wilding conifer 
invasions (Edwards et al. 2020; Gawith et al. 2020; Mason 
et al. 2021a; Yletyinen et al. 2021), including concerns over 
control methods (Edwards et al. 2020), and around ecosystem 
service trade-offs and social conflict (Dickie et  al. 2014a; 
Mason et al. 2017).

While ecological research may have potential to improve 
outcomes, uptake into wilding conifer management remains 
limited. In part, this may be due to granularisation of research 
into scientific publications and a focus on international 
scientific novelty rather than local application. Here we seek 
to overcome this gap by gathering all New Zealand-relevant 
ecological research on wilding conifer legacies and applying 
this knowledge to improve long-term outcomes following 
wilding conifer removal. We review the abiotic and biotic 
impacts of wilding conifers at a local scale (or “within site”). 
We then consider temporal processes that span from invasion to 
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restoration: lag-phase, tipping points, ecosystem development, 
post-removal legacies, and the desired ultimate land-use 
outcomes. Based on the evidence gathered from reviewed 
literature, we develop a preliminary decision support tool to 
help improve chances of long-term desired land-use outcomes, 
and review knowledge gaps that remain to be addressed.

Methods

We surveyed the literature on wilding conifers in New Zealand, 
using the search string “TITLE-ABS-KEY(wilding OR invasi* 
OR exotic OR alien OR weed OR contorta) AND TITLE-ABS-
KEY(pine OR pinus OR conifer OR pinaceae OR pseudotsuga 
OR larix) AND AFFILCOUNTRY (zealand)” on the Scopus 
(Elsevier) database. This yielded 368 potential papers, which 
were then evaluated for relevance. Further ad hoc, heuristic 
searching was used to address specific topics. Research from 
outside New Zealand was incorporated where it was relevant, 
but not systematically surveyed.

More research has been done on conifers in plantations than 
on wilding conifers, and in some cases results from plantations 
may be relevant to understanding invasions. Nonetheless, 
plantations differ from invasions in species composition and 
stand structure of both trees and other vegetation, species 
composition of co-introduced or co-invading ectomycorrhizal 
fungi (Walbert et al. 2010) and microbiota, exogenous inputs 
of fertilizer and herbicide, disturbance associated with clearing 
of vegetation, planting and harvesting, and in underlying site 
properties. Data from plantations was therefore included with 
caution where relevant, but primarily when comparable data 
from wilding conifers was not available.

We consider impacts and legacies from the perspective of 
changes in ecosystem properties from comparable uninvaded 
ecosystems. In most cases, the comparison ecosystems are 
uninvaded grasslands that are primarily anthropogenic in 
origin, and that have themselves been considered “novel 
ecosystems” (Hobbs et al., 2006). Thus some of the changes 
that are attributed to “wilding conifers” could equally apply 
to any encroachment of woody vegetation (native or invasive) 
into grasslands (Dehlin et  al. 2008; Dickie et  al. 2011). In 
identifying and quantifying changes to ecosystem properties, 
we do not assume that change is necessarily “bad” or “good”, 
noting that invasive species such as wilding conifers can provide 
valued ecosystem services (Dickie et al. 2014a; Mason et al. 
2017). Instead we focus on those changes that are likely to 
affect the success or failure of wilding conifer control efforts 
and longer-term ecosystem outcomes.

Results

Understanding local scale impacts of wilding conifers is key 
to managing for enduring desired outcomes. The ecosystem 
modifications of invasive trees can initiate longer-term legacies, 
which can, in turn, drive reinvasion and failure of ecosystem 
restoration. We focus on abiotic and biotic impacts, followed 
by discussion of how abiotic and biotic impacts vary with time.

Abiotic impacts
A driving motivation for the initial establishment of non-native 
conifers in New Zealand was to reduce soil erosion. Erosion 
prevention can be a positive ecosystem service provided by 
wilding conifers (Mason et al. 2017), based on the assumption 

that any species of woody vegetation is equivalent in terms of 
erosion reduction. This assumption is supported by evidence 
that Pinus radiata plantations can provide erosion control 
similar to that provided by native woody vegetation, with more 
positive effects in older stands (Hicks 1991; Ekanayake et al. 
1997). Grassland soils have 2.5 times higher root density in 
surface layers of soil than planted pine stands, but pine stands 
have larger roots and greater root mass in deeper soil layers 
(Chen et al. 2000). Logically, wilding conifers probably provide 
similar benefits in terms of reduced soil erosion as plantations, 
but there appear to be no direct measurements of the impact 
of wilding conifers on soil erosion in New Zealand.

The impacts of wilding conifers on hydrology are critically 
important to their estimated economic impact (Wyatt 2018), but 
remain poorly documented in New Zealand. However, there is 
substantial literature on pine plantation impacts on hydrology 
that is likely indicative of wilding conifer impacts (Mark & 
Dickinson 2008). Soils under pine plantations are consistently 
drier than adjacent pasture due to higher canopy interception 
and transpiration (Giddens et al. 1997). In comparison with 
pasture, planted pines reduced water flows by up to 80% in 
a Nelson catchment study (Duncan 1995), by 30–50% in the 
western Waikato (Hughes et  al. 2020), and by 40% in the 
Southern Alps (Mark & Dickinson 2008). The hydrological 
impacts of planted conifers vary with soil, rainfall, slope, extent 
of conifer area, and original ecosystem state (e.g. pasture, 
gorse) (Duncan 1995; Hughes et al. 2020). Overseas, research 
from south-west Australia has shown invasive P. pinaster has 
reduced an aquifer which serves as a major water source for 
the city of Perth (Stock et al. 2012; van Etten et al. 2020).

In addition to hydrological impacts, wilding conifers 
cause substantial changes in soil chemistry and function. Most 
notably, wilding conifer invasions are associated with a loss of 
around 20% of soil carbon in soil surface horizons (0–100 mm 
depth) and increases in soil P availability (Dickie et al. 2011; 
Dickie et al. 2014b). Soil pH tends to drop with increasing 
wilding conifer density, whereas nitrate-N, and total N and 
P responses vary across studies. These chemical changes are 
similar to some observations of planted pine in New Zealand 
(Davis & Lang 1991; Davis 1998; Chen et al. 2000; Scott 
et al. 2006) and elsewhere (Chapela et al. 2001), with a loss 
of soil carbon being particularly consistent.

Leaf area index of wilding conifers, and hence shading, 
increases rapidly with tree density and can be maximised at 
intermediate densities due to crown shape (Dickie et al. 2011). 
Soil respiration is better correlated with wilding conifer leaf 
area index than density, possibly reflecting total carbon input 
into soil (Dickie et al. 2011). A major controller of soil carbon 
dynamics and ecological processes is temperature. High 
shading by wilding conifers can moderate soil temperatures, 
particularly summer high temperatures. In a comparison of 
dense P. nigra invasion vs adjacent uninvaded grassland, 
mean annual soil temperatures at 50 mm depth were reduced 
15% under pine invasion (from 10.1 to 8.6 °C), while 
maximum temperatures were reduced 41% from 29.3 to 
17.2 °C and minimum temperatures remained unchanged 
(0.1 °C, unpublished data from Dickie et al. 2011).

Biotic impacts
While biological invasions are often predicted to cause a loss of 
biodiversity, wilding conifers do not have universally negative 
effects on native plant diversity (Sapsford et al. 2020). Howell 
and McAlpine (2016) found that the understory of Pinus 
contorta can support a high diversity of native species, and 
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Dickie et al. (2011) found that low to intermediate densities 
of Pinus nigra had little or even positive impacts on other 
plant species richness, although plant diversity decreased at 
higher pine densities. Negative impacts of dense trees may be 
driven by shade, competition for water, and changes to soil 
properties (Dehlin et al. 2008). The reported impact of wilding 
conifer invasions on plant diversity may depend on scale of 
measurement, as smaller plots are more likely to show a linear 
decrease in plant diversity with tree density, while larger plots 
show an initial increase in plant diversity followed by decline 
at high wilding conifer density (Sapsford et  al. 2020). An 
initial increase in plant diversity in larger scale plots is likely 
driven by increased habitat heterogeneity at low to moderate 
tree densities (Sapsford et al. 2020).

Similar to the effects of wilding conifer density on plant 
diversity, aboveground insect diversity may also be robust 
to low and moderate density wilding conifer invasions. For 
example, Pinus nigra planted at densities up to 800 trees ha−1 
had relatively small negative effects on invertebrate diversity 
(Pawson et al. 2010), while other studies have shown that conifer 
plantations can support an equal diversity of native detritivores 
as native forests (Parker & Minor 2015). Similarly, generalist 
aboveground invertebrates are more abundant in Pseudotsuga 
menziesii plantations compared to adjacent native Nothofagus 
cliffortioides forest, whereas specialist taxa are more abundant 
and diverse in Nothofagus forest (Evans et al. 2021).

In contrast to the more gradual effects of wilding conifer 
density on plant and insect diversity in the above studies, 
even low densities of wilding conifers have been linked to 
substantial changes in soil biology and function. Dickie et al. 
(2011) found rapid losses of oribatid mite and plant-feeding 
and plant-associated nematode richness with increasing P. 
nigra density. A further analysis of this data showed that 
increased P. nigra density caused nematode communities to lose 
structural complexity and showed an increased dominance of 
stress tolerant species (Peralta et al. 2019). Similarly, even low 
levels of P. contorta invasion have been shown to result in a 
reduction of nematode diversity, and an increase in nematodes 
with short life cycles (Peralta et al. 2020).

Fungal communities are highly sensitive to wilding 
conifer invasion. Wilding conifer invasion is associated with 
a successional accumulation of a relatively small number of 
species of non-native ectomycorrhizal fungi, along with a 
few native, generalist species (Dickie et al. 2010; Sapsford 
et al. 2021), although diversity of both co-invasive and native 
fungi is somewhat higher on Pseudotsuga menziesii (Moeller 
et al. 2015). This relatively small increase in ectomycorrhizal 
fungal diversity occurs at the same time as a loss of around 
50% of saprotrophic fungal diversity and a concomitant 
homogenisation of fungal communities and loss of overall 
fungal diversity (Sapsford et al. 2021). Ectomycorrhizal fungi 
have enzymatic capabilities for organic nutrient uptake that may 
represent fundamental shifts in soil function (Nunez & Dickie 
2014). Wilding conifers also support a diverse community of 
fungal pathogens, which have the potential to spill over into 
native vegetation or plantation forests (Steel et  al. 2022). 
Comparative analyses of fungal endophytes associated with 
Pinus contorta roots showed that pathogenic taxa are more 
abundant, about 4-fold more diverse and compositionally 
distinct on plants from New Zealand compared to northern 
hemisphere plants or native Nothofagus (Gundale et al. 2016). 
It has been suggested that soil from pine plantations can 
support Phytophthora agathidicida, the causative agent of 
kauri dieback, with potential to spill over into kauri (Agathis 

australis) forest (Lewis et al. 2019).
The simplification of soil fungal and invertebrate 

communities following wilding conifer invasion coincides 
with an increased dominance of the bacterial energy channel. 
As bacteria are primarily top-down regulated by predators, 
this shift is reflected largely in increased bacterial feeding 
nematodes (Dickie et  al. 2011; Dickie et  al. 2014b). This 
shift is also supported by data from pine plantations showing 
a moderately high diversity of bacteria, but low diversity 
of fungi under plantations compared with other land-uses 
(including native forest, low-producing grasslands, and 
agriculture) (Wood et al. 2017). Increased bacterial energy 
channel dominance is often indicative of faster nutrient cycling 
rates (Wardle et al. 2004), which combined with potentially 
novel enzymatic capabilities of ectomycorrhizal fungi (Nunez 
& Dickie 2014), may contribute to the observed increase in 
availability of phosphorus and loss of soil carbon. Increased 
nutrient availability, in turn, is likely to contribute to the 
invasion of other plant species, including high phosphorus 
demanding species such as invasive legumes.

The element of time
The abiotic and biotic changes driven by wilding conifers 
vary with time, with some impacts accumulating rapidly and 
others developing more slowly following initial invasion. For 
management, explicit consideration of time may therefore be 
important. Here we consider several critical time-dependent 
processes: lag phases in invasion, tipping points in impacts, 
ecosystem development, legacies of wilding conifers following 
control, and restoration vs re-invasion. These are shown 
conceptually in Fig. 2, and relevant literature reviewed below.

Lag phase
At a national or regional scale, plant invasions commonly 
show an extended “lag phase” of slow initial establishment 
and spread followed by rapid increase (Aikio et al. 2010). Of 
the more than 25 000 introduced plants in New Zealand, only 
around 10% have naturalised and many of those remain limited 
in population or range size (Brandt et al. 2021). It is likely 
that some of these, including some not-yet-invasive conifer 
species, may currently be in a lag phase with future increases 
in population or range likely (Howell 2019). Predicting 
which species are in lag phase and which will never become 
invasive remains elusive. Therefore, while removing low-
abundance non-native plants would be relatively low cost 
per naturalised species, managing potential weeds during the 
lag phase requires a high investment in surveillance (Harris 
et al. 2001), and a willingness to invest in removal of non-
natives that might never become invasive. Lag phases also 
occur at local scales, where initial establishment and growth 
may be slow. Initial establishment may depend on infrequent 
long-distance dispersal, with individual wilding conifer seeds 
being dispersed 40 km or more (Ledgard 2001), and suitable 
microsites being available (Tomiolo et al. 2016). Rare, long-
distance dispersal is critical to species spread but difficult to 
predict (Nathan 2006), and may be driven by a few individual 
seed trees on suitable take-off sites such as hill tops and ridges 
(Ledgard 2001). Initial growth of wilding conifers may be 
strongly limited by grazing, but as seedlings become woody 
with age, grazing becomes less effective as a control method 
(Ledgard & Norton 2008). Once established, wilding conifers 
produce viable seed from as young as five years of age, and 
an individual tree can initiate an invasive population within 
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Figure 2. Conceptual figure of dynamics of wilding conifer populations (black lines and text) and impacts (red lines and text) over time. 
Impacts are shown where nonlinearities with density occur and are otherwise assumed to overlap with the black population line. Shown 
are early and late tipping points, ecosystem development over longer-term occupancy, and legacies that persist following wilding conifer 
control.

15 years of arrival (Ledgard 2001).
Lag phases can be driven by factors intrinsic to a species 

or by external drivers. Intrinsically, natural selection and 
adaptation, whether through genetic or epigenetic mechanisms 
(Zenni et al. 2016) may contribute to increasing invasiveness 
of species over time. It has also been suggested that wilding 
conifers in Europe may evolve increased resistance to native 
herbivores, and hence become more invasive through time 
(Moreira et al. 2013). Epigenetic changes may also drive rapid 
changes in species traits and have been shown to be important 
in other invasive species in New Zealand (Hawes et al. 2019). 
Slowly expanding populations may increase local genetic 
diversity, reducing inbreeding as has been observed in small 
natural populations of Pinus (Robledo‐Arnuncio et al. 2004).

Infrequent and largely unpredictable events, such as 
fires or unusual weather patterns, can also result in sudden 
rapid increases in invasion following slow establishment. 
Disturbance events provide windows of opportunity where 
weeds (including wilding conifers) can rapidly expand. 
Wilding conifers include many fire-adapted species that are 
particularly well suited to rapid seeding following episodic fire. 
Climatic variability may contribute to fire risk and can also 
result in periods either particularly favourable or antagonistic 
to wilding conifer invasion. As one example, Tomiolo et al. 
(2016) suggested that climate prevented high elevation spread 
of Pinus contorta from planted stands for around 12 years, 
although the effect of climate subsequently diminished.

A number of extrinsic biotic factors play key roles in lag 
phases. Invasions of wilding conifers can be initially limited 
or slowed by intensive grazing and by dense vegetation, and 
then increase when those pressures are removed (Ledgard 
2001; Ledgard & Norton 2008). Ledgard (2001) suggests that 
a reduction in grazing both from rabbits and sheep, combined 
with restrictions on high frequency burning contributed to 
a rapid increase in wilding conifers since the 1950s. Initial 
establishment of wilding conifers in New Zealand and 
elsewhere in the southern hemisphere was limited by a lack 
of compatible ectomycorrhizal fungi (Rundel et  al. 2014). 
Deliberate and inadvertent introduction of non-native fungi 

(Dickie et al. 2016), combined with subsequent dispersal by 
introduced mammals (Wood et al. 2015) has largely overcome 
this limitation (Dickie et al. 2010). At a local scale, initial, low-
density wilding conifer invasions may increase mycorrhizal 
inoculum and allow a greater diversity of ectomycorrhizal fungi 
to establish (Sapsford et al. 2021). This may benefit multiple 
wilding conifer species, as an initial co-invasion of P. contorta 
and mycorrhizal fungi was shown to increase mycorrhization 
of Pseudotsuga menzeisii seedlings (Dickie et al. 2014b).

Tipping points
The term tipping points refers to the concept that a small 
change in one parameter can drive large changes in ecosystems, 
including driving systems into alternative stable states (Lenton 
2013). Conceptually this can have some similarities to lag 
phases, but lag phases refer to the population and distribution 
of the invasive species, whereas tipping points apply more 
generally to impacts. Tipping points are also related to the 
concepts of ecological thresholds and alternative stable states 
(Norton et al. 2018).

Increasing tree density can cause both rapid and delayed 
impacts, which could correspond to tipping points. While few 
research papers have explicitly linked the theory of tipping 
points to actual wilding conifer invasion stages, we suggest 
that a few tipping points are well supported. These are:
(1) Initial establishment of the first wilding conifer. This is an 
important tipping point because a single established tree can 
initiate the establishment of ectomycorrhizal fungi, greatly 
reducing the barrier to subsequent invasion (Fig. 3a).
(2) First production of viable seed, resulting in rapid increase 
in invasion rate and density (Fig. 3b).
(3) Shifts in belowground function. Biotic impacts of wilding 
conifers on many aspects of soil appear to be driven largely 
by the presence of any wilding conifer, rather than density. 
Tree roots (in general) have been shown to influence soils at 
distances of 2–3 times the height of the tree that they originate 
from (Baylis 1980; Dickie & Reich 2005). This suggests that 
for soil function and diversity, there is an important tipping 
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point when tree roots reach all microsites within the area 
(e.g. Dickie et al. 2005). This could be quantified based on 
tree height and spatial distribution (Sprague et al. 2019), or 
pragmatically assessed as the proportion of area within 3 tree 
heights of an established wilding conifer (Fig. 3c, d).
(4) Canopy closure and loss of native plant diversity. Wilding 
conifers most commonly invade into grassland ecosystems, 
largely comprising plants with limited shade tolerance. Thus, 
while initial impacts on native plant diversity may be slow 
to develop, canopy closure can drive a rapid change later in 
the invasion process, with a subsequent loss of native plant 
diversity and seed sources (Fig. 3e).

Other tipping points may occur, and further research on 
the application of tipping point theory to the density and age 
of wilding conifer invasions is needed.

Figure 3. Development of wilding conifer invasions over time, showing (a) initial establishment, where no wilding conifers are visible, but 
establishment occurs between tussock grasses, allowing ectomycorrhizal fungal communities to build up populations, (b) initial seeding, 
(c-d) increasing below-ground occupancy, such that all areas are within 2–3 tree heights of established wilding conifers, (e) closed canopy 
forest, and (f) post-control legacies, showing high levels of wilding conifer necromass, invasive sward-forming grasses, and reinvasion by 
wilding conifers. Photo locations are (in order), Mt Bruce, Canterbury (a, b), Tekapo area with Aoraki Mt Cook in the background, Otago 
(c), Mt Isobel, Canterbury (d), Ngahere Experimental Basin, Kaweka Range, Hawke’s Bay (e) and Craigieburn Forest, Canterbury (f).

Ecosystem development
Ecosystem development refers to the gradual change in 
ecosystem properties over time, including the accumulated 
effects of vegetation. In New Zealand, most wilding conifer 
invasions remain relatively young, while the majority of 
planted conifer stands are managed on fairly short rotation. 
This makes it challenging to predict the longer-term ecosystem 
changes that would occur if wilding conifer populations are 
allowed to persist. Thinning of pine plantations can result in 
increased native diversity in the understorey (McQueen 1973), 
but whether self-thinning in older wilding conifer stands would 
follow similar patterns remains unknown. Furthermore, there 
is evidence that wilding conifer populations exhibit ecosystem 
effects that differ from mature conifer stands in their native 
range. For example, in a comparison of Pinus contorta as 
an invasive in Chile vs as a native in a North American site, 
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Taylor and colleagues (2016) found that biodiversity impacts 
with increasing tree density were greater in the invasive range, 
while litter depth increased more rapidly with increasing tree 
density in the native range. Wilding conifers are associated with 
increased bacterial dominance, whereas conifer stands in their 
native range are generally assumed to be fungal dominated. 
This may suggest that the increased bacterial dominance of 
wilding conifer stands is a transitional state that will eventually 
reverse to fungal dominance (Dickie et al. 2014b). However, 
there is also some evidence that the importance of the bacterial 
energy channel in conifer stands in their native range has been 
previously underestimated (Pollierer et al. 2012).

Legacies
The impacts of invasive plants on soils and on biotic 
communities are not immediately reversed following control 
efforts but may persist for some time (Corbin & D’Antonio 
2012). While killing and, in some cases, removing wilding 
conifers aboveground is fairly straightforward, removing the 
effects of those wilding conifers on soils or belowground 
communities is not generally possible. A common outcome 
following wilding conifer control is invasion of other non-native 
species, particularly grasses (Fig. 3f), and soil bioassay results 
suggest at least part of this effect is driven by soil legacies 
(Dickie et al. 2014b). The dominance of grasses following 
wilding conifer removal may decline over time, with one 
study showing lower grass dominance ten years after wilding 
conifer removal, although this did not coincide with recovery 
of native vegetation (Paul & Ledgard 2009).

The mechanisms driving legacies include the residual 
biomass of wilding conifers, persistence of biotic changes 
(e.g., other invasive species), or lasting changes to the abiotic 
environment (Reynolds et al. 2017; Wardle & Peltzer 2017). 
Killing of wilding conifers results in a major input of carbon 
and nutrients in the form of leaf and root litter and deadwood, 
but the degree to which this occurs is dependent on the methods 
used (clearcut, mulching, herbicide; Fig. 4a). Dead trees left 
on site can provide shelter for seedlings of both invasive and 
native species (Paul & Ledgard 2008). Biotic legacies include 
the persistence of ectomycorrhizal fungi, which may facilitate 
re-invasion by wilding conifers (Dickie et al. 2014b).

Management activities (e.g. herbicide, roading) during 
wilding conifer removal can create another mechanism for 
legacies, and these legacies can be highly method-dependent. 
For example, aerial foliar herbicide application can result in 
mortality of remaining native vegetation. Further, herbicides 
and their break-down products have been shown to persist 
in soils for up to two years, and longer in forest floor litter 
(Paul 2020). Contrary to some prior suggestions, this residual 
herbicide does not appear to directly suppress ectomycorrhizal 
fungi (SS, ID, CA Rolando, T Paul, unpubl. data), but does 
affect germination and growth of both wilding conifer seedlings 
and other vegetation for at least 16 months, including inducing 
severe root and shoot deformities (Fig. 4b). Direct application 
of herbicide through drilling and filling may greatly reduce 
non-target impacts (Paul & Ledgard 2009).

There are two largely unresolved questions around the 
timing of wilding conifer legacies. First, how rapidly do 
legacies develop following initial invasion? Most studies of 
wilding conifer legacies have compared well established stands 
to uninvaded sites, and we were unable to find any studies of 
stands younger than 20 years. Second, how long do legacies 
persist following removal? We found no published data on 
the persistence of wilding conifer legacies over time since 

removal. However, soil legacies of native conifers in New 
Zealand have been shown to persist over 40 years (Wardle 
et al. 2008). Further, overseas data suggests that at least some 
mycorrhizal fungi associated with wilding conifers have high 
spore longevity in soil, with inoculum potential of some 
species increasing with time over a period of at least a few 
years (Bruns et al. 2009).

Long-term outcomes: Pasture, Plantation, Restoration or 
Reinvasion?
Pasture
In some cases, the goal of wilding conifer removal is to restore 
or establish pasture. Non-native grasses may have increased 
growth following wilding conifer removal (Davis 1998; Paul & 
Ledgard 2009; Dickie et al. 2014b), which in the case of pasture 
is advantageous. Once established, non-native grasses may 
successfully resist wilding conifer invasion, with fertilization 
increasing this ability (Ledgard 2006). Benecke (1967) found 
that fertilised and over-sown grasslands successfully resisted 
P. contorta establishment through competitive exclusion of 
seedlings, regardless of the level of grazing.

Heavy grazing by ungulates has been shown to effectively 
prevent P. contorta invasion in South America, but only at 
> 4 times the recommended sheep stocking rate for the area 
(Nasca et  al. 2018). Interpreting this in the New Zealand 

Figure 4. Legacies of management include (a) residual biomass 
left on site, providing shelter and nutrients, and (b) residual 
herbicide effects on other plants, in this case root deformities on 
Pinus contorta grown in post-spray soils.
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context is challenging, as stocking rates are often much higher. 
Nonetheless, wilding conifers vary in palatability to sheep, but 
in general a sufficiently high stocking rate to suppress wilding 
conifers would likely also suppress most native regeneration 
and may exceed optimal stocking rates for pasture productivity 
or other environmental outcomes. Benecke (1967) suggests 
that unimproved grasslands with carrying capacities of 1 
stock unit per 4 acres or less (equivalent to 1 female sheep 
1.6 ha−1) are susceptible to invasion; under these conditions 
conifers survived, but did not grow, for at least 27 months in 
unimproved grasslands. The importance of stocking rate is 
supported by further anecdotal evidence from New Zealand 
that reduced stocking and cessation of fertilizer can increase 
wilding conifer invasion (Ledgard & Norton 2008).

Plantation
A second possible outcome after wilding conifer removal is 
the establishment of plantations of other, less-invasive, non-
native trees.

With any non-native planting, the risk of that species 
becoming invasive needs to be carefully considered. Obtaining 
fast-growing forestry species that present low risk of invasion 
remains a challenge. Conifers with greater seed mass are 
widely thought to have shorter dispersal distances, but recent 
work has demonstrated that seed dispersal is driven more by 
the ratio of mass to wing size in conifers rather than mass 
per se; furthermore, the ratio of mass to wing size trait varies 
considerably within species (Wyse & Hulme 2021). Serotiny, 
where seeds are retained in cones and only released after 
fire, is also of limited value in preventing invasion, as solar 
warming can cause cones to open (Wyse et al. 2019). There 
has been research into producing sterile pines, and into using 
species currently perceived to be lower invasion risk, such 
as Pinus radiata x attenuata hybrids (Froude 2011). Sterility 
has generally involved male sterility, rather than elimination 
of cone and seed production (Fritsche et al. 2018). Conifers 
produce copious wind-dispersed pollen, and hence male sterility 
may only limit invasion in situations where complete removal 
of surrounding pollen sources is possible. The perception 
that hybrids are lower invasion risk based on seed size and 
serotiny also needs to be rigorously tested, which has not yet 
occurred (Dungey et al. 2013). Previous failure to invade may 
not indicate future trends, as many species show extended lag 
phases (see above) before becoming invasive.

Replanting following timber harvesting in plantations 
is routine, and it is likely that planting non-native trees 
following wilding control may largely follow similar patterns. 
Nonetheless, some of the legacies of either wilding conifers 
or their management may affect planting success, such as 
persistence of pathogens or residual herbicide. The risk of 
reinvasion by wilding conifers under a planted forest requires 
consideration, including the possibility that wilding conifers 
may be challenging to detect when growing among plantation 
trees (Perroy et al. 2017).

Restoration
Wilding conifers frequently occur on land where the objective 
of wilding conifer removal is to restore native vegetation. 
Large areas of wilding conifer invasion occur in tussock 
grass and shrub dominated grasslands. Although dominated 
by native species, many of these ecosystems are the result 
of historical anthropogenic burning and grazing (Hobbs 
et al. 2006), but have come to have a high cultural value as 
an iconic landscape (Page et al. 2015). Wilding conifers are 

able to establish between tussock spaces in these grasslands, 
particularly where tussock density is low (Allen & Lee 1989). 
It has been argued that wilding conifers represent a somewhat 
inevitable reversion to woody vegetation in these ecosystems, 
albeit comprising non-native rather than native trees (Hall et al. 
2019). As such, restoring and maintaining grassland presents 
a higher reinvasion risk than taller-statured woody vegetation 
(Taylor et al. 2016).

McAlpine and colleagues (2016) found that native 
regeneration under P. contorta was limited by a lack of seed 
sources, while in other sites seed rain under wilding conifers 
can be dominated by native species (Moles & Drake 1999). 
Nonetheless, even where native species dominate seed rain, 
non-native weedy species may dominate dormant seed banks 
in the soil and are therefore likely to dominate if large scale 
disturbance occurs (Moles & Drake 1999). The method of 
wilding conifer removal may have a large effect on restoration 
success, with poisoning (resulting in gradual tree death) being 
more effective than clear felling, as this maintains partial 
shading and reduces weed growth (Paul & Ledgard 2009; 
McAlpine et al. 2016). Paul and Ledgard (2008) also suggest 
that dead conifers left in place can increase native shrub 
growth and reduce exotic dominance, but with some loss of 
plant diversity due to increased grass growth.

Opening gaps in wilding conifer canopies can increase 
native seed germination, but this is species dependent 
(McAlpine & Drake 2003). While some native species respond 
well to gaps, gaps also greatly increase germination of some 
weeds, including Cytisus scoparius (McAlpine & Drake 2003). 
Underplanting wilding conifers with native conifers has been 
successful in degraded pine plantations (Forbes et al. 2015), and 
may allow more rapid development of native, later-successional 
forest than would be achieved by clear-felling.

Although a few New Zealand native plant species are 
ectomycorrhizal (Nothofagus, Kunzea, Leptospermum, 
Pomaderris), there is very limited sharing of fungal partners 
between most wilding conifer species and native plants (Dickie 
et  al. 2010; Moeller et  al. 2015). The partial exception is 
Pseudotsuga menziesii, which may be more prone to forming 
associations with native fungi than other introduced conifers; 
but even for P. menziesii, non-native fungi predominate once 
P. menziesii is the dominant vegetation (Moeller et al. 2015). 
Sites where established native ectomycorrhizal vegetation is 
absent may require mycorrhizal inoculum of native plants 
during restoration, either by planting already mycorrhized 
seedlings, or through direct inoculation.

If successfully established, native vegetation could reduce 
subsequent wilding conifer reinvasion, as increasing vegetation 
cover is negatively correlated with Pinus contorta invasion 
(Taylor et al. 2016). Taylor and colleagues also found that 
tall shrub and woody vegetation had lower levels of invasion 
than either grasslands or short shrubland. The ability of tall 
woody vegetation to resist invasion has some limitations as 
edges of plantings, gaps, and disturbed areas may provide 
higher light environments where wilding conifers can establish. 
Further, P. menzeisii has been shown to invade into native 
forest in Argentina (Orellana & Raffaele 2010), suggesting 
that restoration of native vegetation in New Zealand may not 
prevent invasion by shade tolerant species.

The ability of native vegetation to suppress reinvasion 
can depend on site factors. Wilding conifers can invade into 
favourable microsites well above native treeline (Tomiolo 
et  al. 2016). On these more extreme sites, competition 
from tussock grasses and shrubs may help suppress early 
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establishment of wilding conifers compared with bare soil or 
alpine mats (Tomiolo et al. 2016), but those wilding conifers 
that do establish in alpine sites are unlikely to be subsequently 
suppressed by relatively short stature native vegetation.

Reinvasion
Reinvasion by wilding conifers is common following wilding 
conifer control (Buckley et al 2007; Banks et al. 2018). Such 
reinvasion can differ from initial invasions as the legacies of 
the initial invasion and control method change the biotic and 
abiotic environment compared to the initial invasion.

A substantial seed bank may persist following wilding 
conifer death. For example, Pinus contorta seeds in direct 
contact with soil can retain viability for four years (Ledgard 
2001) and may persist longer where partially open or closed 
cones are buried in soil (Teste et al. 2011). Any remaining 
trees either in or near a removal site will continue to produce 
fresh seed rain, while trees with surviving branches within 
managed sites can show rapid regrowth (Paul & Ledgard 2009). 
Choice of method may have a substantial impact on reinvasion. 
Harvesting wilding conifers can remove the trees, but it disturbs 
the soil and leaves it more vulnerable to reinvasion from the 
seed bank and from surrounding seed sources, while mulching, 
for example, fails to kill branches low on trunks, resulting in 
substantial reinvasion by resprouting (Paul & Ledgard 2009).

Wilding conifer removal creates a highly disturbed 
environment, and wilding conifers are adapted to establish 
well following disturbance. This has been termed a “weed-
shaped hole” (Buckley et  al. 2007), which either wilding 
conifers or other invasive species are likely to refill. Wilding 
conifers are also well adapted to fire disturbance, which is a 
major risk post-removal, driven by dead standing or felled 
trees and by increased grass biomass (Clifford et al. 2013). 
Early successional shrublands are fire prone, which is further 
promoted by non-native plant invasions, potentially preventing 
return to native vegetation dominance (Perry et  al. 2015). 
Where there is an opportunity for selection of species used 
in restoration, consideration of flammability (Wyse et  al. 
2016) or ability to resprout following a fire (Teixeira et al. 
2020) may increase resilience. Climate change may further 
increase the risk of reinvasion, particularly through increases 
in disturbance (e.g. fire).

The impacts of wilding conifers on mycorrhizal fungi, 
herbivores, and other biota can also contribute to reinvasion. 
Reinvading trees are unlikely to be limited by a lack of 
mycorrhizal fungi. Conversely, increased populations of 
wilding-conifer adapted pathogens may reduce wilding conifer 
growth and density, as has been observed in other weeds (Diez 
et al. 2010). Non-native herbivores also appear to have a larger 
negative effect on wilding conifer density than on total native 
plant abundance in one study (McAlpine et al. 2016).

Discussion

Despite much research on the management of wilding conifers 
in New Zealand, these invasive tree species remain a pernicious 
problem. Management of invasive species has been said to 
suffer from a “knowing-doing gap” where ecological research 
has little impact on management activities (Matzek et al. 2014). 
Management practitioners identify research on improved 
methods of killing invasive species as a key priority, along with 
further research on invasive species impacts, while longer-term 
outcomes are often seen as lower priorities (Matzek et al. 2014). 

A focus on killing wilding conifers may be sufficient where 
the primary objective is reducing spread (Buckley et al. 2005), 
rather than restoring or otherwise rehabilitating the invaded site. 
Reducing spread protects uninvaded areas and thereby reduces 
overall long-term management costs. Nonetheless, as wilding 
conifers become increasingly common, and an increasing 
proportion of the landscape is impacted, it is logical to shift 
the focus toward mitigating impacts, increasing resistance to 
reinvasion, and restoring or transitioning ecosystems to new, 
presumably more desirable, states.

Here we have reviewed ecological research on wilding 
conifers in New Zealand, with a goal of improving long term 
management outcomes. In broad strokes, the lessons gleaned 
from published ecological research can be summarised as 
follows:
(1) Wilding conifers fundamentally change soils and other 
aspects of ecosystems, and these impacts are not easily reversed;
(2) Altered soils and other site conditions, combined with 
increased invasion pressure, make re-invasion and invasion 
by other non-native species highly likely;
(3) Impacts and legacies are non-linear with wilding conifer 
density and over time, showing tipping points where impacts 
rapidly increase;
(4) Restoration and maintenance of tussock grasslands is 
problematic when wilding conifers are present, with ongoing 
intensive management in perpetuity likely necessary; and,
(5) Viable long-term outcomes not requiring a high investment 
in ongoing management are:
(a) improved pasture,
(b) replanting to non-native trees of less-invasive species,
(c) tall woody native vegetation (large shrubs, trees).

These findings have direct implications for management, 
suggesting that a greater focus on desired land-use outcomes 
is critical, and that legacies of wilding conifers should be 
considered both during management (e.g. avoiding critical 
tipping points) and in restoration to ensure the objectives or 
goals of management are achieved.

An outcome-focussed decision tree to support management
Based on our consideration of tipping points, legacies, and 
restoration, and incorporating these ecological processes with 
management practices, we have developed a decision tree to 
achieve different desired land-use outcomes (Fig. 5).

The first step is perhaps the most critical in the decision 
tree: consideration of long-term desired land-use outcomes. The 
choice of land-use outcomes sits within the broader context of 
the site, including both biophysical constraints (soils, climate), 
invasion risk into the site, budget and timeframe, and social, 
cultural, and legal constraints. A critical consideration is 
the potential of the site to drive further spread, and whether 
avoiding this requires more rapid management.

Non-native vegetation
Where the goal is improved pasture (e.g. fertilised, non-
native grasses with intensive grazing), wilding conifers can 
be removed using the most cost effective strategies (Ledgard 
2009). Subsequent land uses that include fertilisation, over-
sowing and heavy grazing or ploughing of soil should be 
sufficient to deplete seed banks and prevent reinvasion 
within a site (Crozier & Ledgard 1990; Nasca et al. 2018). 
The stocking densities sufficient to prevent wilding conifer 
reinvasion, particularly of lower-palatability conifer species, 
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Figure 5. A preliminary decision support tool for long-term management of wilding conifer invasions, with a focus on desired long-term 
outcome.
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may be higher than optimal for maximizing yield (Nasca 
et al. 2018). Ditches and fence lines or other sites inaccessible 
to stock present a risk of reinvasion and may require active 
ongoing management. Notwithstanding these issues, improved 
pasture remains the most straightforward land-use to achieve 
(Ledgard 2009).

A second option is to replace wilding conifers with 
another non-native tree or trees (typically fast-growing species 
with economic value). Any replacement tree species must 
simultaneously be able to resist wilding conifer invasion and 
not, itself, pose a risk of being the next invasive tree (Howell 
2019). The latter problem is illustrated by Douglas-fir, which has 
possibly become much more invasive over time as compatible 
mycorrhizal fungi have spread (Moeller et al. 2015). It has 
been suggested that hybrid Pinus attenuata x radiata may be 
less invasive than some other conifers based on seed size and 
serotiny (Dungey et al. 2013), but evidence that hybrids will 
not become invasive remains lacking. Many traits desirable 
from a forestry perspective (e.g. fast growth rate, ability to 
tolerate high elevation climates) are also likely to promote 
invasive risk (McGregor et al. 2012).

Once a suitable tree species is identified, potential risk 
factors need to be considered. Wilding conifer legacies and 
disturbance associated with control elevate the risk of further 
species invasion. Management strategies for non-native grass, 
shrub (e.g. Scotch broom), and wilding conifer invasions 
post-wilding conifer removal need to be considered, including 
removing adjacent seed sources and ensuring that revegetation 
occurs rapidly following wilding conifer removal. Further 
risks affect the choice of removal method, including fire 
risk if deadwood is left on site, risk of disease organisms 
establishing in deadwood, residual effects of herbicides (if 
used) on seedling growth, and risk of reinvasion by wilding 
conifers into windrows or edges of plantations.

Restoring native vegetation
Where the goal is to restore native woody vegetation, an 
important decision point is whether a critical tipping point 
has been reached that will make restoration more difficult. 
Management should be prioritised to remove wilding conifers 
as quickly as possible where tipping points have not yet been 
crossed; these include first reproduction, site occupancy (i.e. 
all areas within 2–3 tree heights of a wilding conifer), and 
canopy closure.

In some invasive conifer stands, native vegetation can be 
relatively abundant in the understory (Howell & McAlpine 
2016), while in other sites a lack of seed can severely limit 
native regeneration (McAlpine et al. 2016). In areas without 
any native regeneration source, it should be considered whether 
native plants can be established before starting wilding conifer 
removal.

In most post-removal wilding conifer sites, there is a 
considerable risk of aggressive non-native weeds dominating. 
In particular, scotch broom and non-native grasses respond 
very vigorously to belowground legacies of wilding conifers 
and can dominate subsequent plant communities. Where 
advanced native regeneration is present and aggressive non-
native weeds are absent, we suggest that removal can proceed 
either quickly or gradually, with monitoring and management 
of secondary invasion. If, however, aggressive weeds are 
present, then removal of wilding conifers may be best achieved 
using gradual removal strategies to try to reduce the release of 
these weeds. Gradual removal is also recommended to prevent 
wilding conifer reinvasion (McAlpine et al. 2016).

Restoring and maintaining native low-stature vegetation 
(e.g. small shrubs and tussock grasses) is the most challenging 
land-use outcome to achieve. Wilding conifers can easily 
invade even well-established native grasslands, as evidenced 
by the current wilding conifer problem. Before restoring native 
grassland, the capacity for ongoing management, likely in 
perpetuity, needs to be considered. For high value sites (rare 
ecosystems, alpine sites), biodiversity benefits may be sufficient 
to justify such long-term investment (Smale et al, 2011; Wiser 
et al. 2013; Tomiolo et al. 2016). Preventing tipping points is 
a key priority in these high value ecosystems, ideally stopping 
any invasion before it gets started. Otherwise, alternative 
land-use outcomes need to be considered. Tall woody native 
vegetation is more likely to resist wilding conifer reinvasion 
than low-stature vegetation, provided a high density can be 
achieved.

Ongoing management
Regardless of the desired land-use outcome, management 
of wilding conifers is not a single event, but rather requires 
ongoing monitoring and management. For Pinus contorta, a 
3-year management cycle has been recommended to completely 
eliminate reproductive individuals before they can produce 
viable seed. Managing invasive trees on a relatively frequent 
cycle may also help avoid critical tipping points (e.g. shifts in 
belowground function), even for species having greater age to 
reproductive maturity. Multiple weeds are likely to respond to 
both the soil legacies of wilding conifers, and the disturbance 
created by their removal. Management of other invasive species 
(e.g. non-native grasses, Scotch broom, other invasive trees) 
may be necessary to achieve desired land-use outcomes.

Over much longer timeframes, the most resilient landscape 
is likely to be one dominated by improved pasture, planted 
non-native trees, and/or native forest. Native forest remains 
susceptible to invasion by Douglas-fir, which will require 
ongoing management. Low stature vegetation is likely 
to be maintained only in high value sites with intensive 
management. Outside of these high value sites, landowners 
are understandably adverse to managing wilding conifers 
where they believe re-invasion is inevitable and ongoing 
management will be required in perpetuity (Yletyinen et al. 
2021). Conversely, land-use conversion including restoration 
to native woody vegetation may face social opposition due to 
a loss of iconic tussock grassland landscapes. Social conflict is 
widespread in invasive tree management Dickie et al. 2014), 
with a recent study suggesting social concerns are the most 
critical constraints on wilding conifer management in New 
Zealand (Mason et al. 2021b).

Limitations and further research needs

Most of the research on wilding conifer impacts and dynamics 
reviewed here is based on a limited number of species 
(particularly Pinus contorta and P. nigra) and a limited number 
of locations, and generally over short time periods. The impacts 
and legacies of wilding conifers can be context dependent 
(Sapsford et al. 2020), and management may need to be tailored 
to individual regions and even individual sites. Long-term 
changes in impacts under older wilding conifer stands, and 
long-term persistence of legacies once wilding conifers are 
removed remain largely unexplored. Further, the impacts and 
invasibility of wilding conifers is likely to change over time 
due to, for example, evolutionary adaptation, accumulation 
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of pests, pathogens and mutualists, changes in populations of 
other invasive species, and global climate change (Zenni et al. 
2016; Dickie et al. 2017).

Despite the wealth of research that has already been 
performed on wilding conifers, a number of key questions 
remain to be addressed. Many of these deal with multi-
species interactions of wilding conifers with other invasive 
plant species, with invasive animals, and with other biota 
(particularly pathogens). We identify a number of these key 
research questions in Table 1. From a management point of 
view, these remaining questions and uncertainties do not 
invalidate the value of ecological research but do suggest that 
an adaptive approach may be needed.
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Table 1. Research gaps and questions remaining to be addressed.
__________________________________________________________________________________________________________________________________________________________________

Research gap	 What is known	 Key questions
__________________________________________________________________________________________________________________________________________________________________

Quantification of tipping points	 Ecological theory of tipping points is well explored in 	 Can we better predict when tipping 
	 the literature, and some response curves suggest tipping	 points occur? 
	 points are present in wilding conifer impacts at specific	 Are tipping points context 
	 stages of invasion.	 dependent?
Resistance to reinvasion through 	 Most wilding conifer species are shade intolerant, 	 Are there optimal mixtures of native 
native plant communities	 with the exception of Pseudotsuga menzeisii. 	 plants? 
	 Establishment is associated with gaps between tussocks	 Can tussock grassland ever resist 
	 and disturbance.	 invasion?
		  Can any native vegetation resist 		
		  Pseudotsuga menziesii invasion?
Interactions of wilding conifers	 Legacies of wilding conifers can favour non-native	 How important are secondary 
with other invasive plant species	 grasses and legumes. 	 invasions to long-term outcomes?
		  Can legacies be mitigated by 		
		  modifying soil or site conditions?
Interactions of wilding conifers	 Deer, possums, and feral pigs are known to disperse	 Are there any areas where invasive 
with invasive animals	 invasive ectomycorrhizal fungi. 	 ectomycorrhizal fungi have not
	 Declining rabbit and hare populations are suggested to 	 already established, and can invasive 
	 have led to increased wilding conifer invasions.	 mammal management protect these 	
		  areas?
		  What is the role of herbivory in 
		  reducing wilding conifer 			 
		  populations?
Biotic resistance through other	 Native Armillaria fungi were implicated in initial	 Can native pathogens be harnessed to 
biota	 conifer plantation failures.	 increase ecosystem resistance to 		
		  wilding conifer invasion?
Duration and reversibility of 	 Wilding conifers impact multiple aspects of soil abiotic	 Long-term persistence of legacies 
legacies	 and biotic properties, which contribute to legacies	 has not been quantified. Potential for 
	 following removal at least over relatively short time	 mitigation and reversal of legacies 
	 frames.	 remains largely unknown.
Consequences of removal method	 Disturbance can favour reinvasion, residual herbicide	 Which removal methods are best in 
for long-term trajectories	 affects plant growth, and wilding conifer slash can 	 particular contexts or to achieve 
	 facilitate both native and non-native plant growth.	 particular outcomes?
How do the impacts of wilding	 Some of the effects of wilding conifers (positive and	 How much variation in ecosystem 
conifers on ecosystem services 	 negative) on ecosystem services are similar to the effects	 service effects of woody vegetation 
differ from native woody 	 of any woody vegetation.	 is driven by species? 
succession?
__________________________________________________________________________________________________________________________________________________________________
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