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Abstract: The Hochstetter’s frog (Leiopelma hochstetteri) is a nationally At Risk – Declining species, but 
management decisions for this species are limited by the lack of established monitoring protocols and analytical 
methods. We compared methods for inferring spatial and temporal patterns in abundance on Aotea (Great Barrier 
Island) using count data collected from fifteen 100 m stream transects in 2012, 2015 and 2021. Each transect 
was surveyed 2–3 times on the same day each year. Frogs were not marked, but individuals were identified in 
2021 based on their body sizes and locations to facilitate the use of closed-population capture-mark-recapture 
(CMR) methods. We compared patterns in abundance estimates derived from Bayesian formulations of CMR 
(2021 only), N-mixture, Poisson regression of single counts, and occupancy models. Abundance estimates from 
CMR and N-mixture models were realistic and reasonably precise if detection probability (p) was assumed 
constant among transects. N-mixture estimates were 17% lower than CMR estimates but closely correlated 
with them. Relaxing the assumption of constant p among transects made little difference to CMR estimates 
but greatly reduced the precision of N-mixture estimates. Assuming constant p among transects, the N-mixture 
abundance estimates for the 15 transects were consistent among years. The 95% credible interval for the change 
in abundance from 2012–2021 ranged from a 24% decrease to a 10% increase. Mean first counts were 32% 
as high as N-mixture estimates, reflecting the estimated detection probability for first surveys. However, the 
spatial and temporal patterns inferred from single counts were consistent with those from N-mixture, and the 
change over time was estimated with only slightly lower precision. Estimated occupancy probabilities were 
correlated with N-mixture estimates but could not distinguish among transects with greater than 50 frogs and 
could not be used to infer changes over time. 

Keywords: abundance, capture-mark-recapture, conservation, Leiopelma hochstetteri, monitoring, N-mixture, 
occupancy modelling

Introduction

Robust analytical methods for the estimation of population 
parameters are essential to inform threatened species 
management (Nichols & Williams 2006). Identifying the most 
appropriate methods for determining the status of populations is 
of utmost importance for amphibians, due to ongoing declines 
coupled with a high risk of extinction for approximately one-
third of amphibian species worldwide (Green et al. 2020). There 
are a broad range of life history strategies within the Amphibia, 
necessitating the development of a plethora of population 
survey and monitoring methodologies. These methods may 
require the capture and identification of individuals or can 
use data collected from passive detection of species presence 
(Bower et al. 2014). They can be further categorised by the 
type of inference made about the population parameters (e.g. 

abundance, survival, species distribution) being examined: 
index methods, site-based estimation, and individual-based 
estimation. Population indices and estimates differ in that index 
methods make no attempt to estimate detection probability; 
therefore, parameters like abundance are underestimated 
whenever the probability of detecting individuals is less than 
1.0 (Williams et al. 2002). Parameter estimation techniques 
account for imperfect detection probability; therefore, they can 
estimate absolute parameter values that are robust to nuisance 
variables that affect detection (Royle & Dorazio 2008). Site-
based estimation requires the detection of a species at replicated 
independent sites, whereas individual-based estimation 
generally requires the capture and recapture of multiple 
identifiable individuals (Royle & Dorazio 2008). Amphibian 
eggs, larvae, or adults are typically detected at sites by acoustic 
surveying, non-capture encounter, trapping, netting, search of 
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artificial retreats, or, more recently, by eDNA assay (Pearman 
et al. 1995; Rödel & Ernst 2004; Bower et al. 2014; Hobbs 
et al. 2019). Individual identification of amphibians usually 
requires capture for microchipping, visible implant elastomer 
(VIE) tagging, toe clipping, or photography of unique markings 
(Rödel & Ernst 2004; Schmidt & Schwarzkopf 2010; Bendik 
et al. 2013; Bower et al. 2014). However, the effectiveness of 
each technique is constrained by the life history of the study 
species.

The endemic amphibian fauna of Aotearoa New Zealand 
once comprised at least nine frog species in the genus 
Leiopelma (Easton et  al. 2022). Remnant populations of 
the three remaining extant species are threatened by habitat 
destruction, invasive mammalian predators, and climate 
change (Burns et al. 2018). Hochstetter’s frogs (Leiopelma 
hochstetteri; Fig. 1) are the most widespread extant species, 
with 11 evolutionarily significant units spread over the northern 
half of Te-Ika-a-Māui (The North Island). It is considered At 
Risk – Declining at a national level and Regionally Declining 
in the Tāmaki Makaurau / Auckland region (Burns et al. 2018; 
Melzer et al. 2022). Compared with Archey’s frogs (L. archeyi) 
and Hamilton’s frogs (L. hamiltoni), monitoring efforts for 

Hochstetter’s frogs have been relatively unstandardised and 
short-term (≤ 9 years, Table 1; Bell & Pledger 2023; Germano 
et al. 2023). Consequently, our relative lack of understanding 
of the population dynamics of Hochstetter’s frogs precludes 
informed conservation management of this species at local 
or national scales.

Many standard detection and individual identification 
techniques for other amphibians are ineffective for Hochstetter’s 
frogs because they are small-bodied, cryptically camouflaged, 
lack distinctive patterning or areas of transparent skin, and 
rarely vocalise (Bell 1978; Mellor et al. 2004). Most survey 
and monitoring programmes have followed the daytime stream 
transect search protocol of Bell (1996), although transect length 
and survey replication has varied substantially among studies 
(Table 1). Protocols for eDNA assay and scent-detection by 
trained dogs are currently in development (Smith & Feickert 
2021; D. Bishop, pers. comm.). The most commonly reported 
population parameter from monitoring programmes for 
Hochstetter’s frogs is a single-survey count index of relative 
abundance (Table 1). Open-population capture-mark-recapture 
(CMR) of toe-clipped frogs has been trialled, but ultimately 
failed due to insufficient recaptures (Slaven 1992; Whitaker 

Figure 1. (Top) Adult Hochstetter’s frog in 
Te Paparahi, Aotea, New  Zealand. Photo:  
C. Johnson. (Bottom) Surveyors searching 
transects for Hochstetter’s frogs in April 2021. 
The 100 m central transect line (white) can be 
seen. Photos: S. Dwyer.
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Table 1. Summary of methods used to monitor or survey abundance or relative abundance of Hochstetter’s frogs from surveys of stream transects.
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Method	 Applications	 Advantages/Disadvantages
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Closed-population 	 • Slaven (1992): 5 transects (150–200 m) near Golden Cross, Coromandel, surveyed 	 • Can estimate absolute abundance and associated uncertainty 
capture-mark-recapture (CMR)	 2–3 times. Duration: 2 years*	 • Can accommodate multiple forms of variation in detection probability (p)
	 • Moreno Puig (2009): 50 40 m transects in Waitakere Ranges, surveyed 4 times	 • Requires individual ID, e.g. from toe-clipping or size and location
	 • This study: 15 100 m transects on Aotea surveyed 2–3 times in 2012, 2015, and 2021	 • Surveys should be done in rapid succession (e.g. hours or days) to meet 		
		  closed population assumption

N-mixture	 • Moreno Puig (2009): as for CMR but without individual ID; p estimated from 	 • Can estimate absolute abundance and associated uncertainty without the 
	 spatial replicates	 need for individual ID
	 • This study: as for CMR but without individual ID; p estimated from repeat surveys	 • Do not need temporal replicates if spatial replicates obtained from sites 		
		  assumed to have equal expected density
		  • Highly sensitive to assumptions, with limited capacity to account for 		
		  variation in p

Single counts	 • Green & Tessier (1990): surveys throughout species’ range	 • Lack of temporal replication minimises disturbance and potentially allows
	 • Whitaker & Alspach (1999): trends in counts near Golden Cross 1989–1998	 wider coverage
	 • Baber et al. (2006): spatial distribution at Maungatauri	 • Cannot estimate absolute abundance
	 • Nájera-Hillman et al. (2009): model habitat factors correlated with counts in 	 • Can infer changes in relative abundance over time or space if reasonable to 
	 Waitakere Ranges	 assume constant detection probability
	 • Longson et al. (2017): trend in Maungatautari counts from 2009–2012
	 • Moreno Puig (2009): as above using first counts only
	 • This study: as above using first counts only	

		
Site occupancy	 • Crossland et al. (2005): occupancy of 40 m transects in Hunua Ranges, 	 • Can reduce effort if stop searching at first detection 
	 5–23 m transects in Brynderwyn Hills, and 2.5–18 m in Mahurangi Forest, 	 • Loss of power compared to counts 
	 2003–2004. 3–8 repeat surveys.	 • Can infer distribution & relative abundance
	 • Crossland et al. (2023): occupancy of 96 10 m transects in Hunua Ranges in 	 • Can potentially derive absolute abundance, depending on replication, scale 
	 relation to predator control	 of sampling and abundance-induced heterogeneity in detection probability
	 • Moreno Puig (2009): occupancy of 40 m transects, overall abundance derived 
	 from detection probability
	 • This study: occupancy of 10 m segments over 100 m transects, used to derive 
	 abundance
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

*This design was inappropriate for closed-population CMR due to the intervals between surveys allowing for recruitment, deaths, immigration and emigration. 
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& Alspach 1999). Whitaker and Alspach (1999) suggested 
that this was due to high migration rates of previously marked 
frogs at monitoring sites, or because small proportions of the 
population inhabiting each site were accessible for capture and 
marking during each survey. More recent efforts at population 
parameter estimation for this species have included occupancy 
estimation, N-mixture modelling, and closed-population 
CMR on unmarked frogs (Moreno Puig 2009; Crossland et al. 
2005 2023). Advantages of not marking unless necessary for 
estimating individual-based parameters like survival include 
reduced stress to frogs, increased search efficiency due to less 
time spent handling animals, and less reliance on highly trained 
surveyors (Mellor et al. 2004; Schmidt & Schwarzkopf 2010).

Capture-Mark-Recapture are a suite of statistical methods 
in which recapture or re-sighting data from individually 
identifiable animals are used to estimate individual-based 
parameters such as abundance, survival, or recruitment. 
Estimates derived from CMR therefore can be robust to 
variation in individual detection probability among surveys, 
sites, and individual animals (Kellner & Swihart 2014). 
Capture-Mark-Recapture methods have been applied to long-
term monitoring (> 18 years) data from toe-clipped and/or 
photographically identified Archey’s and Hamilton’s frogs (Bell 
& Pledger 2023; Germano et al. 2023). N-mixture methods 
estimate individual detection probability and population size 
without identifying individuals (Royle 2004; Kéry & Royle 
2015; Ficetola et al. 2018). They achieve this by simultaneously 
estimating abundance and detection probability based on the 
likelihood of obtaining an observed sequence of repeated counts 
over space and/or time. However, N-mixture can be highly 
sensitive to untestable assumptions inherent in repeated count 
data (i.e. consistent detection probability among individuals 
and that no individual has been double-counted), making it 
less reliable than CMR (Link et  al. 2018). Site occupancy 
modelling provides an alternative means of accounting for 
imperfect detection in repeated survey data. By treating sites 
rather than individuals as the unit upon which detection is 
replicated, presence-absence data can be used to estimate 
the probability of a species being detected at sites where it 
is present (MacKenzie et al. 2006). This enables estimation 
of the number of sites occupied by a species, which can be 
a useful indicator of species abundance (MacKenzie et  al. 
2006). In contrast with CMR, N-mixture, and occupancy 
methods, single-survey counts provide an index of abundance 
without accounting for detection probability (Williams et al. 
2002). The advantages of single-survey count indices are that 
repeated surveys are not required, thus reducing sampling 
effort and habitat disturbance. However, count indices often 
underestimate abundance and robust inference from them 
relies on the assumption of constant detection probability 
(Williams et al. 2002).

In this study, we performed CMR, N-mixture, Poisson 
regression of single-survey counts, and occupancy modelling on 
data collected from a monitoring programme for Hochstetter’s 
frogs on Aotea / Great Barrier Island between 2012 and 2021. 
Our primary objective was to investigate whether detection 
abundance could be estimated from limited multi-observer data 
collected from stream-transect surveys of unmarked frogs. Our 
secondary objective was to develop an analysis protocol for 
understanding temporal change in an island metapopulation of 
this species that co-exists with invasive mammalian predators.

Methods

Study site
Surveys of Hochstetter’s frogs were conducted in five river 
catchments in the Te Paparahi region of Aotea (catchments 
‘A– E’, Fig. 2). Te Paparahi is densely forested, with large 
areas of coastal broadleaf forests near the eastern slopes 
and kānuka (Kunzea robusta) forest in patches of secondary 
regrowth following fires in the 1930s (Esler & Astridge 1974; 
Perry et al. 2010). Aotea is free of mustelids (Mustela erminea,  
M. nivalis, M. furo), possums (Trichosurus vulpecula), Norway 
rats (Rattus norvegicus), goats (Capra hircus), and deer (Dama 
spp., Cervus spp., Odocoileus spp.), but has ship rats (Rattus 
rattus), kiore (Rattus exulans), mice (Mus musculus), feral 
pigs (Sus scrofa), and feral cats (Felis catus) (Great Barrier 
Local Board 2017). At the time of survey, there were no pest 
control operations within Te Paparahi.

Fifteen 100 m stream transects were selected within the 
headwaters of the five catchments and at various altitudes 
(143–467 m a.s.l.) (Herbert et  al. 2014; Fig. 2). Transect 
locations were based on accessibility to maximise the number 
of sites that could be surveyed in this rugged and densely 
forested terrain. Transects were marked with flagging tape 
and global positioning system coordinates were recorded to 
enable the same locations to be surveyed over multiple years.

Field methods
Surveys were conducted by 2–5 people over 10–12 days in 
April–May 2012, 2015, and 2021. There was a deliberate 
interval of at least three years between sampling occasions to 
avoid excessive disturbance. Each transect was surveyed twice 
(2012, 2015) or thrice (2021) on the same day. However, we 
excluded data from the first transect surveyed in 2012 (A1) 
as this survey was used to train field staff.

Surveying followed the daytime search protocol specified 
by Bell (1996), which involved walking in an upstream direction 
searching under rocks and refugia (Fig. 1). The replicate surveys 
for each transect were conducted simultaneously by two or 
three observers. That is, the surveyors divided the transect into 
two (50 m) or three (33–34 m) sections, searched one section 
each, and then switched sections until each person had searched 
the whole transect. The time to complete a transect was c. 4 
hours but depended on the number of refugia, i.e. transects 
with more rocks took longer to search. The independence of 
repeated surveys was maintained by observers not discussing 
results until all surveys of a transect were completed. Surveys 
were not conducted during heavy rain or in drought or flood 
conditions.

Upon encountering a frog, the observer recorded the 
distance along the transect (0–100 m) and measured the 
approximate snout-to-vent length (SVL, mm) by holding a 
ruler over the frog. In 2021, the perpendicular distance of 
the frog to the right (+) or left (−) of the central transect line  
(Fig. 1) was also recorded to give the position of each sighting. 
This allowed frogs found in surveys 2–3 to be tentatively 
divided into new captures and recaptures (the terms ‘captures’ 
and ‘recaptures’ were used to conform to standard CMR 
terminology despite frogs not being handled). We considered 
a frog to be a recapture if located within 20 cm of a previous 
record and if the SVL matched within ± 5 mm. This assumption 
is reasonable given Hochstetter’s frogs are sedentary during 
daylight (Tessier et al. 1991), and all replicate surveys were 
completed within a few hours.
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Figure 2. The fifteen 100 m stream transects (shown in yellow) where Hochstetter’s frogs were surveyed in the Te Paparahi region 
(shown in blue on the Topo 250 Map insert) at the north of Aotea (Great Barrier Island), New Zealand. The aerial photography 
used in the map of transects are from the Auckland 0.5 m Rural Aerial Photos series taken in 2010–2012 (https://data.linz.govt.
nz/layer/51769-auckland-05m-rural-aerial-photos-2010-2012/).

Analytical methods
The raw data consisted of one row for each frog found, 
with columns showing the year, transect, survey (1, 2, or 3), 
observer, SVL, distance along the transect and perpendicular 
distance. We used R scripts (R Core Team 2021) to convert 
these observations into four matrices for analysis (see Appendix 
S1 in Supplementary Material). To facilitate CMR modelling, 
we generated two matrices showing the numbers of captures 
and recaptures for each survey of each transect with 2021 
data. To perform N-mixture modelling, we generated a matrix 
showing the total number of frogs found in each survey of 
each transect each year. The first column of this matrix (first 
surveys) was also used for the modelling of single counts. For 
site occupancy modelling, we divided each transect into ten 
10 m segments and generated a matrix showing whether one 
or more frogs were detected in each segment for each survey. 
The 10 m scale matched that used in Crossland et al.’s (2023) 
occupancy data and allowed segment occupancy probability 
to be estimated separately for each transect as a possible 
surrogate for abundance.

We fitted the data to purpose-built models coded using the 
Bayesian updating software OpenBUGS 3.2.3 (Spiegelhalter 
et al. 2014). The flexibility of this modelling approach allowed 

us to construct models suitable for the sampling design and for 
the different types of models to be constructed in a uniform 
framework, facilitating direct comparison of results. We used 
uninformative priors for all parameters except where specified. 
All code and data are available in OpenBUGS format in 
Appendix S2. To allow direct comparison to this code, we 
summarise the structures here using OpenBUGS pseudocode 
rather than traditional mathematical notation. Consequently, 
the parameters shown in the normal distributions below are 
means and precisions (1/SD2) rather than means and standard 
deviations.

We fitted each model using three Markov Chain Monte 
Carlo (MCMC) chains to check convergence, discarding 
a burn-in of at least 1000 samples. In all cases the R-hat 
convergence diagnostic (Brooks & Gelman 1998) was < 1.01 
for the samples used. We performed posterior predictive checks 
(Gelman et al. 2004) to ensure that all models had reasonable 
fit to the data (Appendix S3).

Closed-population CMR
The CMR model for the 2021 data was adapted from code used 
by Hotham et al. (2023) to estimate the abundance of Archey’s 
frogs. The capture probability (c) and recapture probability 
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(p) for survey j of any transect were given by:

logit(c[j]) <- a.p + re.j.p[j] 
logit(p[j]) <- logit(c[j]) + b.B

where a.p is the intercept, b.B is the behaviour effect (change 
in detection probability after initial detection), and re.j.p[j] is a 
random effect allowing for variation among the three surveys 
due to disturbance. The prior for the standard deviation of 
these random effects (s.j.p) was constrained from 0–1, which 
was mildly informative (Banner et al. 2020) as necessitated by 
having just 2–3 surveys. We assumed that detection probability 
was similar among transects but tested the sensitivity of the 
results to this assumption. The model is therefore similar 
to Otis et al.’s (1978) Mtb, except that time and behavioural 
effects apply across multiple sites and the time effect is random 
rather than fixed.

The numbers of captures (u) and recaptures (m) in survey 
j of transect i were taken to be binomial samples from the 
“marked” frogs (M) and “unmarked” frogs (U) present, as 
shown by the code:

u[i,j] ~ dbin(c[j], U[i,j]
m[i,j] ~ dbin(p[j], M[i,j]

U[i,j+1] <-U([i,j]) - u[i,j]
M[i,j+1] <- M[i,j] + u[i,j]

The initial number of unmarked frogs (U[i,1]) is the abundance 
(N[i]), hence the abundances are estimated through this 
sampling process as well as the detection parameters described 
above.

The abundance on each transect was taken to be a Poisson 
sample from an expected number (mu[i]) with a log-normally 
distributed prior, as shown by the code:

a.N[i] ~ dnorm(0, 0.1)
log(mu[i]) <- a.N[i]
N[i] ~ dpois(mu[i])

This prior was also mildly informative, specifying that 
we believed there was a 95% prior probability that there were 
fewer than 500 frogs on a transect (97.5% credible limit for 
N[i] = 490). This number needed to be large enough to ensure 
abundance was not underestimated due to model-imposed 
constraints, but kept within a plausible range to allow all the 
models to converge.

N-mixture
In N-mixture models there is no distinction between captures 
and recaptures. We therefore simplified the CMR model by 
replacing Equations 1–2 with:

logit(p[j]) <- a.p + re.j.p[j]

where p[j] refers to survey-specific individual detection 
probability regardless of previous detection, and Equations 
3–4 with:

n[i,j] ~ dbin(p[j], N[i])

where n[i,j] is the number of frogs detected during survey j 
of transect i. The N-mixture model fitted to the 2021 data was 
otherwise identical to the CMR model.

We fitted two types of N-mixture models to multi-year 

(1)
(2)

(3)
(4)
(5)
(6)

(7)
(8)
(9)

(10)

(11)

data. We first obtained unconstrained estimates of abundance 
for each transect each year using a model identical to that 
used for the 2021 data but with the additional assumption 
that detection probability was constant among years. We then 
fitted a log-linear time-trend model to estimate the change 
in abundance from 2012–2021. Under this model the priors 
for the expected number of frogs on each transect each year 
(Equations 7–8) were replaced with:

a.N ~ dnorm(0,1)
s.trans.N ~ dunif(0,5)

log(mu[i]) <- a.N + b.year*(year[i] - 2012) 
+ re.trans.N[transect[i]]

where a.N is the intercept (average abundance in 2012), b.year 
is the intrinsic rate of increase, and re.trans.n[transect[i]] is a 
random transect effect drawn from a normal distribution with 
mean 0 and standard deviation s.trans.N. In combination, the 
priors for a.N and s.trans.N also limit the number of frogs 
on a transect to less than c. 500, similar to the unconstrained 
model. The form of the two models allowed us to directly 
compare the time-trend model to the model fitted to single 
counts while checking that it adequately captured temporal 
and spatial patterns in abundance.

Single-survey counts
Single-survey count data from one year could not be modelled 
due to lack of replication, but the multi-year data could be fitted 
to a time-trend model using Poisson regression. To do this, we 
simplified the time-trend N-mixture model by removing the 
detection component (Equation 10) and replacing Equation 
11 with:

n[i,1] ~ dpois(mu[i])

where n[i,1] is the number of frogs detected in the first survey 
and mu[i] is the expected count rather than the expected 
abundance.

Site occupancy
In our site occupancy models, the detection component was 
the same as for N-mixture models (Equation 10), but p[j] 
is the probability of the species being detected in a 10 m 
segment if present rather than the probability of an individual 
frog being detected. Whether or not a segment was occupied 
was considered to be a Bernoulli sample based on occupancy 
probability for the transect it belongs to. Whether or not frogs 
were detected in a survey depended on the segment’s occupancy 
status and the detection probability. This is represented by 
the following code, where the subscript i refers to a segment 
rather than a transect: 

present[i] ~ dbern(p.present[transect[i]])
p.detect[i,j] <- present[i]*p[j]

detected[i,j] ~ dbern(p.detect[i,j])

where present[i] is the occupancy status of the segment, 
p.present[transect[i]]) is the occupancy probability for the 
transect containing that segment, and detected[i,j] indicates 
whether frogs were detected in the segment during survey j.

The prior distribution for each transect’s occupancy 
probability was derived from its prior distribution for 
abundance. Assuming individuals are Poisson distributed 
within their habitats, the probability of a species occurring in 

(12)
(13)
(14)

(15)

(16)
(17)
(18)
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a sample area is 1-exp(-D), where D is the expected number 
(Caughley 1977). The probability of a 10 m segment being 
occupied is therefore:

p.present[i] <- 1-exp(-N[it]/10) 

where N[i] is the number of frogs on a 100 m transect divided 
by 10 to get the expected number of frogs in a 10 m segment. 
This form of prior not only maximised consistency with the 
CMR and N-mixture models but also allowed the abundance 
of frogs on each transect to be automatically derived from its 
occupancy probability.

We fitted site occupancy models where the priors for 
abundance matched either those from the unconstrained 
N-mixture model (Equations 7–8) or the time-trend N-mixture 
model (Equations 12–14). The first of these models allowed 
us to assess the correlation between estimated occupancy 
probabilities and abundance, and the second allowed us to assess 
whether it was possible to estimate the change in abundance 
over time from occupancy data alone.

Results

A total of 1068 Hochstetter’s frog observations were recorded 
on the Te Paparahi transects during the surveys in 2012, 2015, 
and 2021 (Table 2). Approximately 17% of observations 
were of juvenile frogs (SVL < 18 mm; Whitaker & Alspach 
1999). In 2012, 155 individual frogs were recorded during 
the first survey (mean 11.1, range 0–38, data from transect A1 
excluded). In 2015 and 2021, 190 (mean 12.7, range 0–54) and 
172 individual frogs (mean 11.5, range 0–30), respectively, 
were recorded during the first survey. The highest number of 
observations each year were consistently made in catchment 
A and the lowest in catchments D and E (Table 2, Fig. 2).

CMR abundance estimates generated from the 2021 
data ranged from 0 to 118 frogs per transect, whereas the 
corresponding N-mixture abundance estimates were 17% 
lower, ranging from 0 to 98 frogs per transect (Fig. 3; Appendix 
S4). However, the abundance estimates generated by CMR 

(19)

and N-mixture models were strongly correlated (Spearman’s 
ρ = 0.989; Fig. 3). The CMR models indicated a behavioural 
effect of observation on individual frogs. That is, the probability 
of re-sighting an individual (the recapture probability, p) 
during a given survey was lower than the probability of 
observing a new individual (the capture probability c; Table 
3). Under the N-mixture model, which makes no distinction 
between captures and recaptures, the detection probability p 
was interpreted as declining after the first survey (Table 3). 
Per-transect abundances estimated by CMR models were 
more precise than those generated by N-mixture models, 
with N-mixture estimates having Coefficients of Variation 
(CVs) c. 30% higher (Fig. 3, Table 4). This difference became 
much more pronounced when we relaxed the assumption of 
equal detection probability among transects, i.e. relaxing this 
assumption made little difference to the precision around 
CMR abundance estimates but greatly reduced the precision 
of N-mixture abundance estimates (Appendix S5).

Assuming constant detection probability among transects, 
abundance estimates from the unconstrained N-mixture model 
were very consistent among years (Fig. 4a). Estimates from 
the time-trend N-mixture model were closely correlated 
with the unconstrained model estimates (ρ = 0.992; Fig. 5), 
meaning the random transect effect in the time-trend model 
(Equation 14) fitted the observed variation among transects 
well. Under the time-trend model, the 95% credible interval 
(CRI) for the intrinsic rate of increase (b.year) ranged from 
−0.03 to 0.01, meaning there was no evidence of change. This 
corresponds to a proportional annual changes in abundance  
(λ = eb.year) ranging from 0.97 to1.01, and a proportional change 
in abundance from 2012–2021 (λ9) ranging from 0.76 to 1.10.

Patterns in relative abundance inferred from single counts 
were strongly correlated with those estimated by N-mixture 
(cf. unconstrained model: Spearman’s ρ = 0.909; cf. time-trend 
model: ρ = 0.933; Fig. 4). The estimated median counts from 
Poisson regression were 32% of the size of corresponding 
estimates from the time-trend N-mixture model, reflecting the 
estimated detection probability for first surveys (Table 3), and 
were more precise than the N-mixture estimates based on their 
CVs (Table 4). The estimated change in relative abundance 

Table 2. Number of individual Hochstetter’s frogs observed in each 100 m stream transect during each survey in Te Paparahi, 
Aotea, New Zealand.
__________________________________________________________________________________________________________________________________________________________________

Transect	 2012	 2015	 2021
	 Survey 1	 Survey 2	 Survey 1	 Survey 2	 Survey 1	 Survey 2	 Survey 3
__________________________________________________________________________________________________________________________________________________________________

A1	 NA	 NA	 20	 30	 29	 20	 25
A2	 29	 28	 35	 33	 28	 23	 27
A3	 38	 25	 54	 45	 30	 26	 16
A4	 17	 8	 11	 12	 10	 12	 19
B1	 20	 16	 10	 16	 8	 6	 7
B2	 10	 6	 12	 13	 28	 4	 12
B3	 7	 5	 2	 4	 0	 1	 0
B4	 0	 0	 2	 2	 1	 1	 1
C1	 12	 9	 26	 9	 3	 6	 7
C2	 14	 5	 11	 10	 24	 14	 17
C3	 3	 1	 0	 0	 9	 6	 9
D1	 3	 2	 3	 3	 0	 2	 1
D2	 0	 0	 0	 0	 0	 0	 0
E1	 1	 1	 1	 1	 1	 0	 0
E2	 1	 0	 3	 2	 1	 1	 2
__________________________________________________________________________________________________________________________________________________________________
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Figure 3. Relationship between abundance (N) estimates 
from closed-population capture-mark-recapture (CMR) and 
N-mixture models fitted to count data for Hochstetter’s frogs 
in fifteen 100 m transects on Aotea in 2021. The dotted line 
shows the fitted relationship indicating that N-mixture estimates 
were 17% lower than CMR estimates. The solid diagonal 
line shows a 1:1 relationship. Error bars show 95% credible 
intervals. See Appendix S4 for data.

Table 3. Mean, median, standard deviation (SD), and 95% credible intervals (2.5% and 97.5%) for detection parameters under 
closed-population capture-mark-recapture (CMR) and N-mixture models fitted to counts of Hochstetter’s frogs conducted 
on fifteen 100 m transects on Aotea in 2021. In CMR there is a distinction between capture probability (probability of a 
previously undetected frog being seen) and recapture probability (probability of a previously detected frog being seen), 
whereas there is no such distinction in N-mixture. See Equations 1, 2, and 10 for explanation of how the capture and recapture 
probabilities were derived from parameters a.p, b.B, and s.j.p.
__________________________________________________________________________________________________________________________________________________________________

Model	 Parameter	 Meaning	 Mean	 SD	 2.5%	 Median	 97.5%
__________________________________________________________________________________________________________________________________________________________________

	 a.p	 intercept	 −1.00	 0.40	 −1.83	 −0.99	 −0.23
	 b.B	 behaviour effect	 −0.89	 0.41	 −1.66	 −0.94	 −0.05
	 s.j.p	 SD in logit(p) among 3 surveys	 0.33	 0.23	 0.04	 0.27	 0.90
CMR	 c[1]	 capture probability 1st survey	 0.26	 0.05	 0.16	 0.27	 0.36
	 c[2]	 capture probability 2nd survey	 0.23	 0.05	 0.12	 0.23	 0.35
	 c[3]	 capture probability 3rd survey	 0.29	 0.08	 0.14	 0.28	 0.46
	 p[2]	 recapture probability 2nd survey	 0.10	 0.01	 0.07	 0.10	 0.14
	 p[3]	 recapture probability 3rd survey	 0.13	 0.01	 0.10	 0.13	 0.17
__________________________________________________________________________________________________________________________________________________________________

	 a.p	 intercept	 −0.91	 0.44	 −1.78	 −0.91	 −0.04
	 s.j.p	 SD in logit(p) among 3 surveys	 0.40	 0.22	 0.08	 0.34	 0.92
N-mixture	 p[1]	 capture probability 1st survey	 0.32	 0.08	 0.17	 0.32	 0.51
	 p[2]	 capture probability 2nd survey	 0.24	 0.06	 0.12	 0.24	 0.38
	 p[3]	 capture probability 3rd survey	 0.27	 0.07	 0.14	 0.27	 0.43
__________________________________________________________________________________________________________________________________________________________________

from 2012–2021 was similar to that derived from N-mixture 
but slightly less precise (95% CRI: 0.77–1.17).

The estimated probability of a 10 m segment being 
occupied ranged from 0 to 1 among transects (Fig. 6a), 
with consistent variation among transects in 2012, 2015, 
and 2021 (Appendix S4). These occupancy estimates were 
strongly correlated with N-mixture estimates (ρ = 0.966 for 
unconstrained N-mixture, ρ = 0.923 for time-trend N-mixture) 
but had poor precision (Appendix S4). Furthermore, occupancy 
estimates were near one for transects estimated to contain > 
60 frogs (e.g. Fig. 6a). Abundance estimates derived from the 
unconstrained occupancy model were strongly correlated with 
unconstrained N-mixture estimates (ρ = 0.966). However, 
occupancy-derived estimated abundances were around half 
the size of N-mixture estimates at the low end of the scale 
(e.g. Fig. 6b). At the high end of the scale, abundances were 
inestimable due to occupancy rates near 100% placing no 

upper constraint on abundance. Changes in abundance over 
time could not be estimated using the time-trend occupancy 
model, i.e. the posterior distribution for b.year matched the 
uninformative prior specified rather than being updated based 
on the data.

Discussion

We trialled closed-population CMR and N-mixture modelling 
on single-year count data of Hochstetter’s frogs collected in 
2021 from a survey of 15 stream transects in Te Paparahi, 
Aotea. These models produced strongly positively correlated 
abundance estimates with reasonable precision. However, per-
transect abundance estimates derived by N-mixture were lower 
than those from CMR. Because data from previous surveys 
of the same transects in 2012 and 2015 were insufficient for 
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Figure 4. (a) Estimates of Hochstetter’s frog abundance for each 100 m transect on Aotea in 2012, 2015, and 2021 generated using 
an unconstrained N-mixture model. (b) Mean first counts of Hochstetter’s frogs for each transect in 2012, 2015, and 2021 generated 
using a log-linear model with year as a fixed effect and transect as a random effect. In both graphs, the error bars represent 95% 
credible intervals. See Appendix S4 for data.
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Table 4. Comparison of Coefficient of Variation (CV) for estimates of abundance from CMR and N-mixture models fitted 
to 2021 data, and for estimates from time-trend single-count and N-mixture fitted to data for all years. CVs are calculated 
as SD / mean from data available in Appendix S2 Values are excluded for transects with means < 10 because C.V.s are not 
comparable when means are small (Reed et al. 2002).
__________________________________________________________________________________________________________________________________________________________________

Transect	 2021 data	 Time-trend models*
	 CMR	 N-mixture	 Single counts	 N-mixture
__________________________________________________________________________________________________________________________________________________________________

A1	 0.22	 0.33	 0.15	 0.21
A2	 0.21	 0.33	 0.12	 0.21
A3	 0.21	 0.33	 0.11	 0.23
A4	 0.22	 0.34	 0.17	 0.21
B1	 0.25	 0.38	 0.17	 0.28
B2	 0.22	 0.31	 0.15	 0.17
B3	 -	 -	 -	 -
B4	 -	 -	 -	 -
C1	 0.27	 0.38	 0.17	 0.29
C2	 0.22	 0.34	 0.16	 0.19
C3	 0.25	 0.37	 -	 0.21
D1	 -	 -	 -	 -
D2	 -	 -	 -	 -
E1	 -	 -	 -	 - 
E2	 -	 -	 -	 -
__________________________________________________________________________________________________________________________________________________________________

*These models generate separate values for each year, but only the 2021  
values are shown here for simplicity.

Figure 5. Comparison between abundance (N) estimates from 
the time-trend N-mixture model (incorporating log-linear 
function with year as a fixed effect and transect as a random 
effect) with estimates using the unconstrained N-mixture 
model. The diagonal line shows a 1:1 relationship. Error bars 
show 95% credible intervals.

constructing CMR models, we compared the performance of 
N-mixture models with occupancy modelling and Poisson 
regression of single-survey counts on the 2012–2021 data. 
Single-survey counts and N-mixture abundance estimates 
among transects and years were strongly positively correlated. 
Occupancy and abundance estimates derived from occupancy 
modelling of 10 m segments of transects were also closely 
corelated with N-mixture abundance estimates. However, 
occupancy estimates were relatively imprecise and could 
not distinguish among transects with greater than 60 frogs. 
Occupancy-derived abundance estimates were much lower than 
N-mixture estimates at the low end of the scale and extremely 
imprecise at the high end of the scale. It therefore appears 
that closed-population CMR and N-mixture methods were 
capable of estimating abundance from our multi-observer data 
and may be promising techniques for understanding temporal 
change in the Te Paparahi Hochstetter’s frog metapopulation. 
We further discuss the appropriateness and limitations of each 
method below.

The actual numbers of frogs occupying transects are 
unknown, so it is uncertain whether the N-mixture or CMR 
model estimated abundances more accurately. N-mixture 
estimates were 17% lower than the corresponding CMR 
estimates, reflecting different interpretations of the data under 
the two models. A critical advantage of CMR over N-mixture 
is the capacity to distinguish detection probabilities based on 
whether individuals have been previously detected, i.e. capture 
vs recapture probabilities (Joseph et al. 2009). The detection 
process often has behavioural effects that lower subsequent 
detection probability (Fegatelli & Tardella 2013). This was 
the case in a CMR study of Archey’s frogs where individuals 
were caught, photographed, and measured on first detection 
(Hotham et al. 2023). It is thus plausible that the disturbance 
to Hochsetter’s frogs from lifting rocks and holding rulers 
over caused the estimated negative effect of prior capture 
on recapture in our study (Table 3). In N-mixture models, 
the decline in the number of frogs detected in successive 
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Figure 6. Comparison between (a) occupancy estimates from an 
unconstrained model for each 100-m transect (probability that 
a 10-m segment occupied) and (b) abundance estimates derived 
from those occupancy estimates, against median abundance 
estimates derived from an unconstrained N-mixture model. The 
estimates shown are for 2021 but similar patterns occurred in 
other years. The diagonal line shows a 1:1 relationship. Error 
bars show 95% credible intervals (note that these intervals 
extend to > 1800 where no upper limits are shown). See 
Appendix S4 for data.

surveys is interpreted as a reduced detection probability for 
all frogs, regardless of their capture history. It seems more 
plausible that behavioural effects apply to frogs whose cover 
was lifted, suggesting that abundance was underestimated 
using N-mixture. However, our CMR method required the 
identification of recaptures based on size and location, and 
incorrect classification could also have biased estimates. 
For example, while most frogs showed no obvious sign of 
disturbance, 6% of detections resulted in frogs jumping under 
adjacent rocks or into water pools. This could have made them 
harder to detect in subsequent surveys, consistent with the 
behavioural effect identified by the CMR model, but could 
also have resulted in them moving greater than 20 cm and 
being misidentified as new individuals, resulting in abundance 
being overestimated.

The other key consideration when comparing CMR and 
N-mixture is the precision around the abundance estimates. As 
expected, N-mixture estimates were slightly less precise than 
CMR estimates when we assumed detection probability was 
equal among transects, but this difference became much more 
pronounced when we relaxed this assumption. This finding 
is consistent with Link et al.’s (2018) simulations showing 
that N-mixture is less robust to the violation of assumptions 
than CMR.

We could not estimate temporal change in abundance with 
CMR because the positional data used to identify recaptures 
were only collected in 2021, but we could do so using the 
time-trend versions of the single-count and N-mixture models. 
Such inference was impossible from the time-trend occupancy 
model. The λ parameter estimated in the single-count and 
N-mixture models did not show a clear trend from 2012–2021. 
However, based on the 95% credible intervals it is possible that 
the Te Paparahi population may be gradually declining, akin 
to Hochstetter’s frog populations on the mainland which are 
suspected to be to be declining due to predation (by rodents, 
pigs, and cats) and/or habitat degradation (Bishop et  al. 
2013; Burns et al. 2018). Apparent increases in Hochstetter’s 
frog densities following the exclusion and control of most 
mammalian predators (Longson et al. 2017; Crossland et al. 
2023) suggest they negatively affects Hochstetter’s frogs in Te 
Paparahi where there has been no predator management. The 
uncertainty in λ illustrates the difficulty in detecting population 
trends, especially given that populations fluctuate rather than 
changing exponentially, meaning data may need to span several 
decades to capture the dynamics (Lester et al. 2017).

The ideal monitoring method for other populations of 
Hochstetter’s frogs will ultimately depend on the objectives 
and scale of the programme as well as the assumptions people 
are prepared to make (Table 1). CMR provides the strongest 
inferences about abundance, but the accuracy of CMR estimates 
depends on the accuracy of individual identification, which 
is problematic for Hochstetter’s frogs unless toe-clipping 
is used. N-mixture is a reasonable alternative but requires 
stronger assumptions about detection probability, including 
the assumption that the initial detection of frogs does not 
affect their subsequent detection probability. Royle’s (2004) 
N-mixture model invokes the additional assumption that spatial 
replicates are random samples from an area with uniform 
density, meaning detection probability can be estimated 
from spatial replicates alone. Moreno Puig (2009) found that 
Royle’s (2004) model greatly overestimated abundance, as 
was expected given there was high variation in counts among 
transects that were inconsistent with the assumption of uniform 
density. We avoided this problem by using N-mixture models 
that estimated detection probability based on repeat counts of 
the same transects.

Single counts are useful if it is most important to reduce 
disturbance or survey effort. Reducing survey effort per transect 
may increase the number of transects surveyed, increasing 
the scale of surveying possible (Green & Tessier 1990) and 
potentially increase the power to determine factors affecting 
relative abundance (Nájera-Hillman et al. 2009). We found 
that single counts repeated over multiple years were strongly 
correlated with N-mixture abundance estimates and were only 
slightly less precise. However, this finding is contingent on 
the assumption that detection probability is constant among 
transects and years, and the inability to relax such assumptions 
is the key limitation of single counts (Williams et al. 2002).

If occupancy modelling is used, this method will need 
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to be tailored to the system being monitored and the number 
of surveys. For monitoring fifteen 100 m transects, it was 
not sensible to record occupancy at the transect level, so we 
instead recorded occupancy in 10 m segments and estimated 
the probability of a segment being occupied over each transect. 
In contrast, Moreno Puig (2009) monitored fifty 4  m transects, 
so recorded occupancy of transects and estimated occupancy 
probability over the whole landscape. As each transect was 
surveyed four times (Moreno Puig 2009) the model developed 
by Royle and Nichols (2003) could be used to estimate 
abundances based on detection probabilities inferred from 
replicate surveys. Like our occupancy analysis, Moreno Puig 
(2009) found that site occupancy gave a rough indication of 
relative abundance, but substantially underestimated absolute 
abundance.

It would not make sense to undertake counts and then reduce 
them to binary occupancy data, as this entails throwing away 
data and therefore statistical power. If using standard search 
methods for Hochstetter’s frogs, it would only make sense to 
use an occupancy approach if transects are short or if substantial 
survey effort can be saved by stopping each survey when the 
first frog is detected. Using the latter method, the time taken to 
find the first frog can potentially be used to model abundances 
(Halstead et al. 2021). Although occupancy modelling was not 
the best methodology for our search methods, it would be highly 
applicable to broader-scale eDNA surveying (Willoughby et al. 
2016; Buxton et al. 2021; Smith & Feickert 2021).

Coordinating a national monitoring strategy for 
Hochstetter’s frogs will require balancing the need for 
consistency against the need for methods that meet objectives 
and constraints at a local level. It is important to ensure that 
surveys for Hochstetter’s frogs are conducted when frogs are 
likely to be detectable and sedentary, meaning surveys should 
be conducted during daylight and not in rainy weather, nor 
during drought or flood conditions (Slaven 1992; Bell 1996; 
Whitaker & Alspach 1999). However, it is likely that the 
number of surveys and lengths of transects will continue to 
vary, and some surveyors may choose to stop when the first frog 
is detected (providing occupancy data) rather than completing 
counts. As illustrated in our study, the flexibility of MCMC 
fitting using Bayesian updating software such as OpenBUGS 
(Spiegelhalter et al. 2014), JAGS (Plummer 2017) or NIMBLE 
(de Valpine et al. 2017) allows multiple data types to be modelled 
in a uniform structure. It is also possible to integrate multiple 
data types within a single model, and such integration would 
be invaluable for a wider comparative analysis of data from 
Hochstetter’s frog monitoring programmes.
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